南方医科大学学报 ›› 2024, Vol. 44 ›› Issue (7): 1315-1326.doi: 10.12122/j.issn.1673-4254.2024.07.11
张叶明1,2,3(), 张袁祥1,2,3, 沈学彬1,2,3, 王国栋1,2,3,4(
), 朱磊1,2,3,4(
)
收稿日期:
2024-04-25
出版日期:
2024-07-20
发布日期:
2024-07-25
通讯作者:
王国栋,朱磊
E-mail:zhangym@wnmc.edu.cn;wangguodong@wnmc.edu.cn;zhulei-6b110@163.com
作者简介:
张叶明,副教授,E-mail: zhangym@wnmc.edu.cn
基金资助:
Yeming ZHANG1,2,3(), Yuanxiang ZHANG1,2,3, Xuebin SHEN1,2,3, Guodong WANG1,2,3,4(
), Lei ZHU1,2,3,4(
)
Received:
2024-04-25
Online:
2024-07-20
Published:
2024-07-25
Contact:
Guodong WANG, Lei ZHU
E-mail:zhangym@wnmc.edu.cn;wangguodong@wnmc.edu.cn;zhulei-6b110@163.com
摘要:
目的 探讨与神经保护相关的基因Rab10在抑郁症体内外模型中发挥的功能和作用机制。 方法 选取36只大鼠作为慢性应激模型组(CUMS组),每只大鼠单笼饲养,进行6周慢性不可预测温和应激,另选取12只作为对照组。CUMS组大鼠完成6周CUMS刺激后,根据旷场实验数据和体质量分成3组(12只/组):CUMS+生理盐水组、CUMS+AAV载体组和CUMS+AAV过表达Rab10组,CUMS+saline组大鼠侧脑室注射生理盐水;CUMS+AAV组大鼠侧脑室注射AAV空病毒载体;CUMS+AAV-oe-Rab10组大鼠侧脑室注射AAV过表达Rab10载体实现Rab10基因过表达,CUMS刺激在整个实验期间持续进行。对照组大鼠始终不进行任何刺激。利用大鼠行为学指标的变化评价大鼠抑郁状态。构建CORT诱导的PC12细胞模型,CCK-8法检测细胞活力。通过TargetScan数据库预测与Rab10相互作用的miRNA及miRNA结合位点,并结合双荧光素酶和RIP实验探究miRNA-103-3p与Rab10的相互作用。在CORT刺激的PC12细胞中过表达Rab10,或在转染miRNA-103-3p inhibitor基础上沉默Rab10,qRT-PCR法检测miRNA-103-3p和Rab10的表达水平;Western blotting检测细胞中Rab10、BDNF、CREB、p62、Beclin-1、Wnt3a、Gsk3β、磷酸化(p)-Gsk3β和β-catenin的蛋白含量。 结果 病毒过表达Rab10后明显改善CUMS大鼠行为学指标(P<0.05)。qRT-PCR和Western blotting证实Rab10基因在CUMS大鼠海马与CORT诱导的PC12细胞中表达下调(P<0.05)。生物信息学结合双荧光素酶和RIP实验证实miRNA-103-3p靶向Rab10(P<0.05)。过表达Rab10或沉默miRNA-103-3p激活了Wnt/β-catenin信号通路,上调BDNF、CREB和Beclin-1的含量,下调p62蛋白的表达(P<0.05);下调miRNA-103-3p的基础上沉默Rab10逆转了miRNA-103-3p的作用(P<0.05)。 结论 miRNA103-3p靶向Rab10激活Wnt/β-catenin信号通路,改善神经细胞的可塑性,促进细胞自噬,从而对抗CORT诱导的PC12细胞损伤。
张叶明, 张袁祥, 沈学彬, 王国栋, 朱磊. 在抑郁症大鼠模型中MiRNA-103-3p调控Rab10促进神经细胞自噬[J]. 南方医科大学学报, 2024, 44(7): 1315-1326.
Yeming ZHANG, Yuanxiang ZHANG, Xuebin SHEN, Guodong WANG, Lei ZHU. MiRNA-103-3p promotes neural cell autophagy by activating Wnt/β-catenin signaling via targeting rab10 in a rat model of depression[J]. Journal of Southern Medical University, 2024, 44(7): 1315-1326.
Gene | Primer sequence (5'-3') |
---|---|
Rab10 | F: GCTGAAGACATCCTCCGAAAGACC |
R: CCGTCACGCCTCCTCCACTG | |
miRNA-103-3p | F: GAGCAGCATTGTACAG |
R: GTGCAGGGTCCGAGGT | |
GAPDH | F: ACAACTTTGGTATCGTGGAAGG |
R: GCCATCACGCCACAGTTTC | |
U6 | F: GCTTCGGCAGCACATATACTAAAAT |
R: CGCTTCACGAATTTGCGTGTCAT |
表1 qRT-PCR的引物序列
Tab.1 Primer sequences for qRT-PCR
Gene | Primer sequence (5'-3') |
---|---|
Rab10 | F: GCTGAAGACATCCTCCGAAAGACC |
R: CCGTCACGCCTCCTCCACTG | |
miRNA-103-3p | F: GAGCAGCATTGTACAG |
R: GTGCAGGGTCCGAGGT | |
GAPDH | F: ACAACTTTGGTATCGTGGAAGG |
R: GCCATCACGCCACAGTTTC | |
U6 | F: GCTTCGGCAGCACATATACTAAAAT |
R: CGCTTCACGAATTTGCGTGTCAT |
图2 CUMS刺激6周后大鼠的行为学变化
Fig.2 Behavioral changes of rats after 6 weeks of CUMS stimulation. A: Changes of body weight of rats during CUMS. B: Effect of CUMS on total distance of the rats in open field test. C: Effect of CUMS on rearing times of the rats in open field test. D: Effect of CUMS on the number of zone crossing in open field experiment. E: Effect of CUMS on sucrose preference in each group. F: Effect of CUMS on immovability time during forced swimming test. *P<0.05 vs Control.
图3 过表达Rab10减轻CUMS诱导的大鼠抑郁样行为
Fig.3 Overexpression of Rab10 attenuates CUMS-induced depression-like behaviors in rats. A: Changes of body weight of the rats after overexpression of Rab10. B: Changes of total distance of the rats in open field test after overexpression of Rab10. C: Changes of rearing times in open field test after Rab10 overexpression. D: Changes of the number of zone crossing in open field experiment after Rab10 overexpression. E: Changes of sucrose preference in rats after Rab10 overexpression. F: Changes of immovability time of the rats after Rab10 overexpression. *P<0.05 vs. sham; #P<0.05 vs CUMS+AAV-NC.
图4 CORT刺激PC12细胞建立抑郁症体外模型并检测细胞与海马中Rab10的表达
Fig.4 Expression of Rab10 in PC12 cells after CORT stimulation and in the hippocampus of CUMS mice. A: Detection of Rab10 expression in rat hippocampus by qRT-PCR. B: Protein levels of Rab10 in the hippocampus detected using Western blotting. C: Relative Rab10 protein expression levels. D: CCK-8 experiment for determining optimal concentration of CORT. E: qRT-PCR for detecting the expression of Rab10 in PC12 cells stimulated by CORT. F, G: Protein levels of Rab10 in the cells detected using Western blotting. H, I: Protein levels of Rab10 in PC12 cells detected using Western blotting. *P<0.05 vs Sham, Control, CORT+oe-NC; #P<0.05 vs CUMS+AAV.
图5 Western blotting检测细胞中神经可塑性和自噬相关蛋白的变化
Fig.5 Detection of neuroplasticity and autophagy-related proteins in PC12 cells by Western blotting. A: Protein levels of BDNF, CREB, P62 and Beclin-1 in PC12 cells detected using Western blotting. B-E: Relative protein expression levels of BDNF (B), CREB (C), P62 (D), and Beclin-1 (E). *P<0.05 vs Control; #P<0.05 vs CORT+oe-NC.
图6 Western blotting确定细胞中过表达Rab10对Wnt/β-catenin信号通路的影响
Fig.6 Western blotting for assessing the effect of Rab10 overexpression on Wnt/β-catenin signaling pathway. A: Protein levels of Wnt3a, GSK3β, p-GSK3β and β-catenin in PC12 cells detected using Western blotting. B-D: Relative protein expression levels of Wnt3a, p-GSK3β/GSK3β and β-catenin, respectively. *P<0.05 vs Control; #P<0.05 vs CORT+oe-NC.
图7 验证miRNA-103-3p与Rab10之间的相互作用
Fig.7 Verification of the interaction between miRNA-103-3p and Rab10. A: TargetScan database showing the binding site of miRNA-103-3p for targeting Rab10. B: qRT-PCR for verifying the expression of miRNA-103-3p in the hippocampus of CUMS mice. C,D: Double luciferase reporter gene experiment confirms the interaction between miRNA-103-3p and Rab10. E: Interaction between miRNA-103-3p and Rab10 detected by Ago2 RIP experiment. *P<0.05 vs Control, miR-NC, anti-NC.
图8 miRNA-103-3p对Rab10表达水平的影响
Fig.8 Effect of miRNA-103-3p on Rab10 expression level. A: qRT-PCR for detecting miRNA-103-3p expression in PC12 cells induced by CORT. B: qRT-PCR for verifying interference efficiency of miRNA-103-3p in PC12 cells induced by CORT. C, D: Protein levels of Rab10 in the PC12 cells detected using Western blotting. E, F: Protein levels of Rab10 in PC12 cells with Rab10 knockdown detected using Western blotting. *P<0.05 vs Control, CORT+sh-NC; #P<0.05 vs CORT +inhibitor-NC.
图9 通过Western blotting测定miRNA-103-3p调控Rab10对细胞中神经可塑性和自噬相关蛋白表达的影响
Fig.9 Effects of miRNA-103-3p-mediated Rab10 regulation on neuroplasticity and autophagy-related protein expression in PC12 cells detected by Western blotting. A: Protein levels of BDNF, CREB, P62 and Beclin-1 in PC12 cells detected using Western blotting. B-E: Relative protein expression levels of BDNF, CREB, P62 and Beclin-1, respectively. *P<0.05 vs Control; #P<0.05 vs CORT+inhibitor-NC; &P<0.05 vs CORT+miRNA-103-3p inhibitor+sh-NC.
图10 通过Western blotting确定miRNA-103-3p调控Rab10对细胞中Wnt /β-catenin信号通路相关蛋白表达的影响
Fig.10 Western blotting for analyzing the effect of miRNA-103-3p on expressions of Wnt/β-catenin signaling pathway-related proteins in PC12 cells. A: Protein levels of Wnt3a, GSK3β, p-GSK3β and β-catenin in the cells detected using Western blotting. B-D: Relative protein expression levels of Wnt3a, GSK3β, p-GSK3β and β-catenin, respectively. *P<0.05 vs Control; #P<0.05 vs CORT+inhibitor-NC; &P<0.05 vs CORT+miRNA-103-3p inhibitor+sh-NC.
1 | Noetel M, Sanders T, Gallardo-Gómez D, et al. Effect of exercise for depression: systematic review and network meta-analysis of randomised controlled trials[J]. BMJ, 2024, 384: e075847. |
2 | Steffens DC. Treatment-resistant depression in older adults[J]. N Engl J Med, 2024, 390(7): 630-9. |
3 | Zhang K, Wang F, Zhai MY, et al. Hyperactive neuronal autophagy depletes BDNF and impairs adult hippocampal neurogenesis in a corticosterone-induced mouse model of depression[J]. Theranostics, 2023, 13(3): 1059-75. |
4 | Kallergi E, Daskalaki AD, Kolaxi A, et al. Dendritic autophagy degrades postsynaptic proteins and is required for long-term synaptic depression in mice[J]. Nat Commun, 2022, 13(1): 680. |
5 | Abdulghani A, Poghosyan M, Mehren A, et al. Neuroplasticity to autophagy cross-talk in a therapeutic effect of physical exercises and irisin in ADHD[J]. Front Mol Neurosci, 2022, 15: 997054. |
6 | Hwang JY, Yan J, Zukin RS. Autophagy and synaptic plasticity: epigenetic regulation[J]. Curr Opin Neurobiol, 2019, 59: 207-12. |
7 | Fleming A, Rubinsztein DC. Autophagy in neuronal development and plasticity[J]. Trends Neurosci, 2020, 43(10): 767-79. |
8 | Jaldin-Fincati JR, Pavarotti M, Frendo-Cumbo S, et al. Update on GLUT4 vesicle traffic: a cornerstone of insulin action[J]. Trends Endocrinol Metab, 2017, 28(8): 597-611. |
9 | Tavana JP, Rosene M, Jensen NO, et al. RAB10: an Alzheimer's disease resilience locus and potential drug target[J]. Clin Interv Aging, 2019, 14: 73-9. |
10 | Vieira OV. Rab3a and Rab10 are regulators of lysosome exocytosis and plasma membrane repair[J]. Small GTPases, 2018, 9(4): 349-51. |
11 | Lu TX, Rothenberg ME. MicroRNA[J]. J Allergy Clin Immunol, 2018, 141(4): 1202-7. |
12 | Wang LM, Zhao Y, Gang SC, et al. Inhibition of miR-103-3p preserves neurovascular integrity through caveolin-1 in experimental subarachnoid hemorrhage[J]. Neuroscience, 2021, 461: 91-101. |
13 | Li W, Wang SS, Shan BQ, et al. MiR-103-3p targets Ndel1 to regulate neural stem cell proliferation and differentiation[J]. Neural Regen Res, 2022, 17(2): 401-8. |
14 | Als TD, Kurki MI, Grove J, et al. Depression pathophysiology, risk prediction of recurrence and comorbid psychiatric disorders using genome-wide analyses[J]. Nat Med, 2023, 29(7): 1832-44. |
15 | 童九翠. 豆腐果苷抗抑郁作用的分子机制研究[D]. 芜湖: 安徽师范大学, 2019. |
16 | Singh V, Menard MA, Serrano GE, et al. Cellular and subcellular localization of Rab10 and phospho-T73 Rab10 in the mouse and human brain[J]. Acta Neuropathol Commun, 2023, 11(1): 201. |
17 | Zhang YX, Zhang XT, Li HJ, et al. Antidepressant-like effects of helicid on a chronic unpredictable mild stress-induced depression rat model: Inhibiting the IKK/IκBα/NF-κB pathway through NCALD to reduce inflammation[J]. Int Immunopharmacol, 2021, 93: 107165. |
18 | Lages YVM, Rossi AD, Krahe TE, et al. Effect of chronic unpredictable mild stress on the expression profile of serotonin receptors in rats and mice: a meta-analysis[J]. Neurosci Biobehav Rev, 2021, 124: 78-88. |
19 | Markov DD, Novosadova EV. Chronic unpredictable mild stress model of depression: possible sources of poor reproducibility and latent variables[J]. Biology, 2022, 11(11): 1621. |
20 | Markov DD. Sucrose preference test as a measure of anhedonic behavior in a chronic unpredictable mild stress model of depression: outstanding issues[J]. Brain Sci, 2022, 12(10): 1287. |
21 | Lin RH, Liu LL, Silva M, et al. Hederagenin protects PC12 cells against corticosterone-induced injury by the activation of the PI3K/AKT pathway[J]. Front Pharmacol, 2021, 12: 712876. |
22 | Chai YH, Cai YW, Fu Y, et al. Salidroside ameliorates depression by suppressing NLRP3-mediated pyroptosis via P2X7/NF-κB/NLRP3 signaling pathway[J]. Front Pharmacol, 2022, 13: 812362. |
23 | Yan TX, Wang LW, Gao J, et al. Rab10 phosphorylation is a prominent pathological feature in Alzheimer's disease[J]. J Alzheimers Dis, 2018, 63(1): 157-65. |
24 | Price RB, Duman R. Neuroplasticity in cognitive and psychological mechanisms of depression: an integrative model[J]. Mol Psychiatry, 2020, 25: 530-43. |
25 | Tartt AN, Mariani MB, Hen RE, et al. Dysregulation of adult hippocampal neuroplasticity in major depression: pathogenesis and therapeutic implications[J]. Mol Psychiatry, 2022, 27(6): 2689-99. |
26 | Colucci-D'Amato L, Speranza L, Volpicelli F. Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer[J]. Int J Mol Sci, 2020, 21(20): 7777. |
27 | Björkholm C, Monteggia LM. BDNF-a key transducer of antidepressant effects[J]. Neuropharmacology, 2016, 102: 72-9. |
28 | Tang MM, Liu T, Jiang P, et al. The interaction between autophagy and neuroinflammation in major depressive disorder: from pathophysiology to therapeutic implications[J]. Pharmacol Res, 2021, 168: 105586. |
29 | Jung S, Choe S, Woo H, et al. Autophagic death of neural stem cells mediates chronic stress-induced decline of adult hippocampal neurogenesis and cognitive deficits[J]. Autophagy, 2020, 16(3): 512-30. |
30 | Rein T. Is autophagy involved in the diverse effects of antidepressants[J]? Cells, 2019, 8(1): 44. |
31 | Reya T, Clevers H. Wnt signalling in stem cells and cancer[J]. Nature, 2005, 434(7035): 843-50. |
32 | Ji RR, Xu ZZ, Gao YJ. Emerging targets in neuroinflammation-driven chronic pain[J]. Nat Rev Drug Discov, 2014, 13: 533-48. |
33 | Lorzadeh S, Kohan L, Ghavami S, et al. Autophagy and the Wnt signaling pathway: a focus on Wnt/β-catenin signaling[J]. Biochim Biophys Acta Mol Cell Res, 2021, 1868(3): 118926. |
34 | Narvaes RF, Furini CRG. Role of Wnt signaling in synaptic plasticity and memory[J]. Neurobiol Learn Mem, 2022, 187: 107558. |
[1] | 李玮怡, 江露, 张宗星, 陈丹, 包卓玛, 黄丽, 袁林. 强骨康疏方通过抑制HIF-1α/BNIP3自噬信号通路减少类风湿性关节炎大鼠的破骨细胞分化[J]. 南方医科大学学报, 2025, 45(7): 1389-1396. |
[2] | 王心恒, 邵小涵, 李童童, 张璐, 杨勤军, 叶卫东, 童佳兵, 李泽庚, 方向明. 平喘宁方通过调控HMGB1/Beclin-1轴介导的自噬改善患寒哮证大鼠的气道炎症[J]. 南方医科大学学报, 2025, 45(6): 1153-1162. |
[3] | 董妍妍, 张可敬, 储俊, 储全根. 抵当汤含药血清通过PI3K/Akt/mTOR信号通路增强高糖诱导的大鼠肾小球内皮细胞自噬[J]. 南方医科大学学报, 2025, 45(3): 461-469. |
[4] | 廖茗, 钟文华, 张冉, 梁娟, 徐文陶睿, 万文珺, 吴超, 李曙. 源自蛇毒的蛋白C激活剂通过调控HIF-1α抑制BNIP3活性氧生成保护人脐静脉内皮细胞免受缺氧-复氧损伤[J]. 南方医科大学学报, 2025, 45(3): 614-621. |
[5] | 郭克磊, 李颖利, 宣晨光, 侯紫君, 叶松山, 李林运, 陈丽平, 韩立, 卞华. 益气养阴化浊通络方通过调控miR-21a-5p/FoxO1/PINK1介导的线粒体自噬减轻糖尿病肾病小鼠的足细胞损伤[J]. 南方医科大学学报, 2025, 45(1): 27-34. |
[6] | 展俊平, 黄硕, 孟庆良, 范围, 谷慧敏, 崔家康, 王慧莲. 缺氧微环境下补阳还五汤通过抑制BNIP3-PI3K/Akt通路抑制类风湿关节炎滑膜成纤维细胞的线粒体自噬[J]. 南方医科大学学报, 2025, 45(1): 35-42. |
[7] | 陈志亮, 杨永刚, 黄霞, 成彦, 瞿媛, 衡琪琪, 符羽佳, 李可薇, 顾宁. 外泌体miRNA差异表达可作为诊断慢性心力衰竭合并高尿酸血症患者新型分子标志物及靶基因功能分析[J]. 南方医科大学学报, 2025, 45(1): 43-51. |
[8] | 程瑶, 王远迎, 姚飞扬, 胡盼, 陈铭勰, 吴宁. 黄芩苷通过调控PI3K/AKT信号通路抑制登革病毒感染诱导的人静脉内皮细胞的自噬[J]. 南方医科大学学报, 2024, 44(7): 1272-1283. |
[9] | 陈芊伊, 尚书涵, 鲁欢, 李思思, 孙志勉, 范喜瑞, 戚之琳. 金盏花苷E通过自噬途径下调GPX4和SLC7A11抑制肝癌细胞的增殖和迁移[J]. 南方医科大学学报, 2024, 44(7): 1327-1335. |
[10] | 孙一鸣, 张荣, 孟莹, 朱磊, 李明强, 刘哲. 辅酶Q10通过下调焦亡信号通路缓解抑郁小鼠的抑郁样行为[J]. 南方医科大学学报, 2024, 44(5): 810-817. |
[11] | 周凤敏, 郭艳菊, 陈 宁. 运动诱导的Irisin表达改善2型糖尿病大鼠的肾脏损伤[J]. 南方医科大学学报, 2024, 44(4): 675-681. |
[12] | 陈君洁, 黄传兵, 李 明. 健脾滋肾方抑制系统性红斑狼疮患者的足细胞自噬:基于网络药理学和临床研究[J]. 南方医科大学学报, 2024, 44(3): 465-473. |
[13] | 肖红敏, 韩保松, 郭家成, 吴 超, 吴敬医. HTD4010 可减轻脓毒症心肌病小鼠的心肌损伤:基于促进AMPK/mTOR信号通路介导的自噬[J]. 南方医科大学学报, 2024, 44(3): 507-514. |
[14] | 李云飞, 庞利君, 束龙武, 李明, 黄传兵. 芪黄健脾滋肾颗粒可改善小鼠系统性红斑狼疮血小板减少:基于Ca2+/CaMKK2/AMPK/mTOR信号通路介导的自噬[J]. 南方医科大学学报, 2024, 44(12): 2327-2334. |
[15] | 姜诚诚, 李洋洋, 段可欣, 詹婷婷, 陈子龙, 王永雪, 赵蕊, 马彩云, 郭俣, 刘长青. Parkin通过介导PINK 1/Parkin线粒体自噬信号通路加速小鼠帕金森病发展及加剧神经炎症发生[J]. 南方医科大学学报, 2024, 44(12): 2359-2366. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||