1 |
Tuttle KR, Bakris GL, Bilous RW, et al. Diabetic kidney disease: a report from an ADA Consensus Conference[J]. Diabetes Care, 2014, 37(10): 2864-83.
|
2 |
Attie AD, Schueler KM, Keller MP, et al. Reversal of hypertriglyceridemia in diabetic BTBR ob/ob mice does not prevent nephropathy[J]. Lab Invest, 2021, 101(7): 935-41.
|
3 |
Mason RM, Wahab NA. Extracellular matrix metabolism in diabetic nephropathy[J]. J Am Soc Nephrol, 2003, 14(5): 1358-73.
|
4 |
A/L B Vasanth Rao VR, Tan SH, Candasamy M, et al. Diabetic nephropathy: an update on pathogenesis and drug development[J]. Diabetes Metab Syndr, 2019, 13(1): 754-62.
|
5 |
Seglen PO, Gordon PB. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes[J]. Proc Natl Acad Sci U S A, 1982, 79(6): 1889-92.
|
6 |
刘本菊, 任海文, 王 朵, 等. 3-甲基腺嘌呤抑制VEGF信号减轻早期糖尿病肾病细胞外基质沉积[J]. 中华内分泌代谢杂志, 2023, 39(10): 876-81.
|
7 |
Ren HW, Yu W, Wang YN, et al. Effects of autophagy inhibitor 3-methyladenine on a diabetic mice model[J]. Int J Ophthalmol, 2023, 16(9): 1456-64.
|
8 |
Dai S, Wang B, Li W, et al. Systemic application of 3-methyladenine markedly inhibited atherosclerotic lesion in ApoE-/- mice by modulating autophagy, foam cell formation and immune-negative molecules[J]. Cell Death Dis, 2016, 7(12): e2498.
|
9 |
Slavin SA, Leonard A, Grose V, et al. Autophagy inhibitor 3-methyladenine protects against endothelial cell barrier dysfunction in acute lung injury[J]. Am J Physiol Lung Cell Mol Physiol, 2018, 314(3): L388-L396.
|
10 |
Liu H, Lei H, Shi Y, et al. Autophagy inhibitor 3-methyladenine alleviates overload-exercise-induced cardiac injury in rats[J]. Acta Pharmacol Sin, 2017, 38(7): 990-7.
|
11 |
Wang XR, Wu YY. Protective effects of autophagy inhibitor 3-methyladenine on ischemia-reperfusion-induced retinal injury[J]. Int Ophthalmol, 2020, 40(5): 1095-101.
|
12 |
Kwon Y, Haam CE, Byeon S, et al. Effects of 3-methyladenine, an autophagy inhibitor, on the elevated blood pressure and arterial dysfunction of angiotensin II-induced hypertensive mice[J]. Biomedecine Pharmacother, 2022, 154: 113588.
|
13 |
Wang XH, Zhou GX, Liu C, et al. Acanthopanax versus 3-methyladenine ameliorates sodium taurocholate-induced severe acute pancreatitis by inhibiting the autophagic pathway in rats[J]. Mediators Inflamm, 2016: 8369704.
|
14 |
Shi YF, Tao M, Ma XY, et al. Delayed treatment with an autophagy inhibitor 3-MA alleviates the progression of hyperuricemic nephropathy[J]. Cell Death Dis, 2020, 11(6): 467.
|
15 |
Qian X, He LL, Hao M, et al. YAP mediates the interaction between the Hippo and PI3K/Akt pathways in mesangial cell proliferation in diabetic nephropathy[J]. Acta Diabetol, 2021, 58(1): 47-62.
|
16 |
Tan HT, Chen JX, Li YC, et al. Glabridin, a bioactive component of licorice, ameliorates diabetic nephropathy by regulating ferroptosis and the VEGF/Akt/ERK pathways[J]. Mol Med, 2022, 28(1): 58.
|
17 |
Tang D, He WJ, Zhang ZT, et al. Protective effects of Huang-Lian-Jie-Du Decoction on diabetic nephropathy through regulating AGEs/RAGE/Akt/Nrf2 pathway and metabolic profiling in db/db mice[J]. Phytomedicine, 2022, 95: 153777.
|
18 |
Wu W, Hu W, Han WB, et al. Inhibition of akt/mTOR/p70S6K signaling activity with Huangkui capsule alleviates the early glomerular pathological changes in diabetic nephropathy[J]. Front Pharmacol, 2018, 9: 443.
|
19 |
Johnson RJ, Floege J, Yoshimura A, et al. The activated mesangial cell: a glomerular "myofibroblast"[J]? J Am Soc Nephrol, 1992, 2(10 ): S190-7.
|
20 |
Young BA, Johnson RJ, Alpers CE, et al. Cellular events in the evolution of experimental diabetic nephropathy[J]. Kidney Int, 1995, 47(3): 935-44.
|
21 |
Wang MG, Shi QL, Zhang RZ, et al. Herbal compound “jiedu Huayu” reduces liver injury in rats via regulation of IL-2, TLR4, and PCNA expression levels[J]. Evid Based Complement Alternat Med, 2017: 9819350.
|
22 |
Thomas MC, Brownlee M, Susztak K, et al. Diabetic kidney disease[J]. Nat Rev Dis Primers, 2015, 1: 15018.
|
23 |
Heckmann BL, Yang XY, Zhang XD, et al. The autophagic inhibitor 3-methyladenine potently stimulates PKA-dependent lipolysis in adipocytes[J]. Br J Pharmacol, 2013, 168(1): 163-71.
|
24 |
Sheng Y, Sun B, Guo WT, et al. 3-Methyladenine induces cell death and its interaction with chemotherapeutic drugs is independent of autophagy[J]. Biochem Biophys Res Commun, 2013, 432(1): 5-9.
|
25 |
Jung JY, Choi H, Son ED, et al. 3-methyladenine inhibits procollagen-1 and fibronectin expression in dermal fibroblasts independent of autophagy[J]. Curr Mol Med, 2020, 20(9): 741-50.
|
26 |
Ichinose K, Kawasaki E, Eguchi K. Recent advancement of understanding pathogenesis of type 1 diabetes and potential relevance to diabetic nephropathy[J]. Am J Nephrol, 2007, 27(6): 554-64.
|
27 |
Lin W, Pan J, Huang EJ, et al. Ginkgetin alleviates high glucose-evoked mesangial cell oxidative stress injury, inflammation, and extracellular matrix (ECM) deposition in an AMPK/mTOR-mediated autophagy axis[J]. Chem Biol Drug Des, 2021, 98(4): 620-30.
|
28 |
Wang XL, Gao YB, Tian NX, et al. Astragaloside IV represses high glucose-induced mesangial cells activation by enhancing autophagy via SIRT1 deacetylation of NF-κB p65 subunit[J]. Drug Des Devel Ther, 2018, 12: 2971-80.
|
29 |
Alessi DR, James SR, Downes CP, et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha[J]. Curr Biol, 1997, 7(4): 261-9.
|
30 |
Wu YT, Tan HL, Shui GH, et al. Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase[J]. J Biol Chem, 2010, 285(14): 10850-61.
|
31 |
Fioretto P, Bruseghin M, Berto I, et al. Renal protection in diabetes: role of glycemic control[J]. J Am Soc Nephrol, 2006, 17(4 ): S86-9.
|
32 |
Boland BB, Alarcón C, Ali A, et al. Monomethylated-adenines potentiate glucose-induced insulin production and secretion via inhibition of phosphodiesterase activity in rat pancreatic islets[J]. Islets, 2015, 7(2): e1073435.
|