1 |
Paik S, Kim JK, Silwal P, et al. An update on the regulatory mechanisms of NLRP3 inflammasome activation[J]. Cell Mol Immunol, 2021, 18: 1141-60.
|
2 |
Toldo S, Mezzaroma E, Buckley LF, et al. Targeting the NLRP3 inflammasome in cardiovascular diseases[J]. Pharmacol Ther, 2022, 236: 108053.
|
3 |
Pan HM, Jian YT, Wang FJ, et al. NLRP3 and gut microbiota homeostasis: progress in research[J]. Cells, 2022, 11(23): 3758.
|
4 |
Palumbo L, Carinci M, Guarino A, et al. The NLRP3 inflammasome in neurodegenerative disorders: insights from epileptic models[J]. Biomedicines, 2023, 11(10): 2825.
|
5 |
马婷婷, 马 骁. NLRP3炎症体在肝脏疾病中的作用及研究进展[J]. 临床消化病杂志, 2022, 34(5): 395-9.
|
6 |
Hurtado-Navarro L, Cuenca-Zamora EJ, Zamora L, et al. NLRP3 inflammasome activation and symptom burden in KRAS-mutated CMML patients is reverted by IL-1 blocking therapy[J]. Cell Rep Med, 2023, 4(12): 101329.
|
7 |
Takahashi M. NLRP3 inflammasome as a key driver of vascular disease[J]. Cardiovasc Res, 2022, 118(2): 372-85.
|
8 |
Dinarello CA, van der Meer JW. Treating inflammation by blocking interleukin-1 in humans[J]. Semin Immunol, 2013, 25(6): 469-84.
|
9 |
Boros LG, Nichelatti M, Shoenfeld Y. Fermented wheat germ extract (Avemar) in the treatment of cancer and autoimmune diseases[J]. Ann N Y Acad Sci, 2005, 1051: 529-42.
|
10 |
Telekes A, Resetar A, Balint G, et al. Fermented wheat germ extract (avemar) inhibits adjuvant arthritis[J]. Ann N Y Acad Sci, 2007, 1110: 348-61.
|
11 |
Saiko P, Ozsvar-Kozma M, Madlener S, et al. Avemar, a nontoxic fermented wheat germ extract, induces apoptosis and inhibits ribonucleotide reductase in human HL-60 promyelocytic leukemia cells[J]. Cancer Lett, 2007, 250(2): 323-8.
|
12 |
Otto C, Hahlbrock T, Eich K, et al. Antiproliferative and antimetabolic effects behind the anticancer property of fermented wheat germ extract[J]. BMC Complement Altern Med, 2016, 16: 160.
|
13 |
Sanchez-Cruz P, Garcia C, Alegria AE. Role of quinones in the ascorbate reduction rates of S-nitrosoglutathione[J]. Free Radic Biol Med, 2010, 49(9): 1387-94.
|
14 |
Gómez-Toribio V, García-Martín AB, Martínez MJ, et al. Enhancing the production of hydroxyl radicals by Pleurotus eryngii via quinone redox cycling for pollutant removal[J]. Appl Environ Microbiol, 2009, 75(12): 3954-62.
|
15 |
Yoo A, Jang YJ, Ahn J, et al. 2, 6-Dimethoxy-1, 4-benzoquinone increases skeletal muscle mass and performance by regulating AKT/mTOR signaling and mitochondrial function[J]. Phytomedicine, 2021, 91: 153658.
|
16 |
Kamiya T, Tanimoto Y, Fujii N, et al. 2, 6-Dimethoxy-1, 4-benzoquinone, isolation and identification of anti-carcinogenic, anti-mutagenic and anti-inflammatory component from the juice of Vitis coignetiae [J]. Food Chem Toxicol, 2018, 122: 172-80.
|
17 |
Arimoto-Kobayashi S, Sasaki K, Hida R, et al. Chemopreventive effects and anti-tumorigenic mechanisms of 2, 6-dimethoxy-1, 4-benzoquinone, a constituent of Vitis coignetiae Pulliat (crimson glory vine, known as yamabudo in Japan), toward 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in A/J mice[J]. Food Chem Toxicol, 2021, 154: 112319.
|
18 |
Zu XY, Ma XL, Xie XM, et al. 2, 6-DMBQ is a novel mTOR inhibitor that reduces gastric cancer growth in vitro and in vivo [J]. J Exp Clin Cancer Res, 2020, 39(1): 107.
|
19 |
Son HJ, Jang YJ, Jung CH, et al. 2, 6-dimethoxy-1, 4-benzoquinone inhibits 3T3-L1 adipocyte differentiation via regulation of AMPK and mTORC1[J]. Planta Med, 2019, 85(3): 210-6.
|
20 |
Fu J, Wu H. Structural mechanisms of NLRP3 inflammasome assembly and activation[J]. Annu Rev Immunol, 2023, 41: 301-16.
|
21 |
Akbal A, Dernst A, Lovotti M, et al. How location and cellular signaling combine to activate the NLRP3 inflammasome[J]. Cell Mol Immunol, 2022, 19(11): 1201-14.
|
22 |
Rathinam VAK, Zhao Y, Shao F. Innate immunity to intracellular LPS[J]. Nat Immunol, 2019, 20: 527-33.
|
23 |
Spel L, Martinon F. Inflammasomes contributing to inflammation in arthritis[J]. Immunol Rev, 2020, 294(1): 48-62.
|
24 |
Werner LE, Wagner U. Calcium-sensing receptor-mediated NLRP3 inflammasome activation in rheumatoid arthritis and autoinflammation[J]. Front Physiol, 2022, 13: 1078569.
|
25 |
Zhu H, Jian ZH, Zhong Y, et al. Janus kinase inhibition ameliorates ischemic stroke injury and neuroinflammation through reducing NLRP3 inflammasome activation via JAK2/STAT3 pathway inhibition[J]. Front Immunol, 2021, 12: 714943.
|
26 |
Fusco R, Siracusa R, Genovese T, et al. Focus on the role of NLRP3 inflammasome in diseases[J]. Int J Mol Sci, 2020, 21(12): 4223.
|
27 |
Wang LX, Ren W, Wu QJ, et al. NLRP3 inflammasome activation: a therapeutic target for cerebral ischemia-reperfusion injury[J]. Front Mol Neurosci, 2022, 15: 847440.
|
28 |
Chai YH, Cai YW, Fu Y, et al. Salidroside ameliorates depression by suppressing NLRP3-mediated pyroptosis via P2X7/NF-κB/NLRP3 signaling pathway[J]. Front Pharmacol, 2022, 13: 812362.
|
29 |
Han JW, Shim DW, Shin WY, et al. Anti-inflammatory effect of emodin via attenuation of NLRP3 inflammasome activation[J]. Int J Mol Sci, 2015, 16(4): 8102-9.
|
30 |
Schmid-Burgk JL, Gaidt MM, Schmidt T, et al. Caspase-4 mediates non-canonical activation of the NLRP3 inflammasome in human myeloid cells[J]. Eur J Immunol, 2015, 45(10): 2911-7.
|
31 |
Cridland JA, Curley EZ, Wykes MN, et al. The mammalian PYHIN gene family: phylogeny, evolution and expression[J]. BMC Evol Biol, 2012, 12: 140.
|
32 |
Wei ZY, Zhan XY, Ding KX, et al. Dihydrotanshinone I specifically inhibits NLRP3 inflammasome activation and protects against septic shock in vivo [J]. Front Pharmacol, 2021, 12: 750815.
|