[1] |
Erkoc P, Yasa IC, Ceylan H, et al. Mobile microrobots for active therapeutic delivery[J]. Adv Ther, 2019, 2(1): 1800064. doi:10.1002/adtp.201800064
|
[2] |
Luo M, Feng YZ, Wang TW, et al. Micro-/ nanorobots at work in active drug delivery[J]. Adv Funct Mater, 2018, 28(25): 1706100. doi:10.1002/adfm.201706100
|
[3] |
Liu Y, Huang J, Liu C, et al. Soft millirobot capable of switching motion modes on the fly for targeted drug delivery in the oviduct[J]. ACS Nano, 2024, 18(12): 8694-705. doi:10.1021/acsnano.3c09753
|
[4] |
Xu HF, Medina-Sánchez M, Magdanz V, et al. Sperm-hybrid micromotor for targeted drug delivery[J]. ACS Nano, 2018, 12(1): 327-37. doi:10.1021/acsnano.7b06398
|
[5] |
Cai YP, Chen YH, Hong XY, et al. Porous microsphere and its applications[J]. Int J Nanomedicine, 2013, 8: 1111-20. doi:10.2147/ijn.s41271
|
[6] |
Yawalkar AN, Pawar MA, Vavia PR. Microspheres for targeted drug delivery- A review on recent applications[J]. J Drug Deliv Sci Technol, 2022, 75: 103659. doi:10.1016/j.jddst.2022.103659
|
[7] |
Sharifi-Azad M, Fathi M, Cho WC, et al. Recent advances in targeted drug delivery systems for resistant colorectal cancer[J]. Cancer Cell Int, 2022, 22(1): 196. doi:10.1186/s12935-022-02605-y
|
[8] |
Alapan Y, Bozuyuk U, Erkoc P, et al. Multifunctional surface microrollers for targeted cargo delivery in physiological blood flow[J]. Sci Robot, 2020, 5(42): eaba5726. doi:10.1126/scirobotics.aba5726
|
[9] |
Xin C, Yang L, Li JW, et al. Conical hollow microhelices with superior swimming capabilities for targeted cargo delivery[J]. Adv Mater, 2019, 31(25): e1808226. doi:10.1002/adma.201808226
|
[10] |
Kubota T, Kurashina Y, Zhao JY, et al. Ultrasound-triggered on-demand drug delivery using hydrogel microbeads with release enhancer[J]. Mater Des, 2021, 203: 109580. doi:10.1016/j.matdes.2021.109580
|
[11] |
Yuan LC, Xu XX, Song XT, et al. Effect of bone-shaped nanotube-hydrogel drug delivery system for enhanced osseointegration[J]. Biomater Adv, 2022, 137: 212853. doi:10.1016/j.bioadv.2022.212853
|
[12] |
Li JY, Mooney DJ. Designing hydrogels for controlled drug delivery[J]. Nat Rev Mater, 2016, 1: 16071. doi:10.1038/natrevmats.2016.71
|
[13] |
Dave PN, Macwan PM, Kamaliya B. Drug release and thermal properties of magnetic cobalt ferrite (CoFe2O4) nanocomposite hydrogels based on poly(acrylic acid-g-N-isopropyl acrylamide) grafted onto gum ghatti[J]. Int J Biol Macromol, 2023, 224: 358-69. doi:10.1016/j.ijbiomac.2022.10.129
|
[14] |
Caliari SR, Burdick JA. A practical guide to hydrogels for cell culture[J]. Nat Methods, 2016, 13(5): 405-14. doi:10.1038/nmeth.3839
|
[15] |
Prince E, Kumacheva E. Design and applications of man-made biomimetic fibrillar hydrogels[J]. Nat Rev Mater, 2019, 4(2): 99-115. doi:10.1038/s41578-018-0077-9
|
[16] |
Rosales AM, Anseth KS. The design of reversible hydrogels to capture extracellular matrix dynamics[J]. Nat Rev Mater, 2016, 1: 15012. doi:10.1038/natrevmats.2015.12
|
[17] |
Collins MN, Birkinshaw C. Hyaluronic acid based scaffolds for tissue engineering: a review[J]. Carbohydr Polym, 2013, 92(2): 1262-79. doi:10.1016/j.carbpol.2012.10.028
|
[18] |
Dumont CM, Carlson MA, Munsell MK, et al. Aligned hydrogel tubes guide regeneration following spinal cord injury[J]. Acta Biomater, 2019, 86: 312-22. doi:10.1016/j.actbio.2018.12.052
|
[19] |
Shen HL, Cai SX, Wang Z, et al. Magnetically driven microrobots: Recent progress and future development[J]. Mater Des, 2023, 227: 111735. doi:10.1016/j.matdes.2023.111735
|
[20] |
Zhou HJ, Mayorga-Martinez CC, Pané S, et al. Magnetically driven micro and nanorobots[J]. Chem Rev, 2021, 121(8): 4999-5041. doi:10.1021/acs.chemrev.0c01234
|
[21] |
Liu Y, Lin GG, Bao GC, et al. Stratified disk microrobots with dynamic maneuverability and proton-activatable luminescence for in vivo imaging[J]. ACS Nano, 2021, 15(12): 19924-37. doi:10.1021/acsnano.1c07431
|
[22] |
Huang J, Liu Y, Wu JD, et al. An extracellular matrix-mimicking magnetic microrobot for targeted elimination of circulating cancer cells[J]. Nanoscale, 2024, 16(2): 624-34. doi:10.1039/d3nr03799a
|
[23] |
Qiao SS, Ouyang HK, Zheng XG, et al. Magnetically actuated hydrogel-based capsule microrobots for intravascular targeted drug delivery[J]. J Mater Chem B, 2023, 11(26): 6095-105. doi:10.1039/d3tb00852e
|
[24] |
Lin FC, Zheng JJ, Guo WH, et al. Smart cellulose-derived magnetic hydrogel with rapid swelling and deswelling properties for remotely controlled drug release[J]. Cellulose, 2019, 26(11): 6861-77. doi:10.1007/s10570-019-02572-0
|
[25] |
Kim DI, Lee H, Kwon SH, et al. Magnetic nano-particles retrievable biodegradable hydrogel microrobot[J]. Sens Actuat B Chem, 2019, 289: 65-77. doi:10.1016/j.snb.2019.03.030
|
[26] |
Xie MH, Zhang W, Fan CY, et al. Bioinspired soft microrobots with precise magneto-collective control for microvascular thrombolysis[J]. Adv Mater, 2020, 32(26): e2000366. doi:10.1002/adma.202000366
|
[27] |
Bielas R, Hornowski T, Paulovičová K, et al. The effect of magnetic particles covering the droplets on the heating rate of Pickering emulsions in the AC magnetic field[J]. J Mol Liq, 2020, 320: 114388. doi:10.1016/j.molliq.2020.114388
|
[28] |
Pinelli F, Perale G, Rossi F. Coating and functionalization strategies for nanogels and nanoparticles for selective drug delivery[J]. Gels, 2020, 6(1): 6. doi:10.3390/gels6010006
|
[29] |
Wu B, Li Y, Li YY, et al. Pickering emulsions-chitosan hydrogel beads carrier system for loading of resveratrol: Formulation approach and characterization studies[J]. React Funct Polym, 2021, 169: 105074. doi:10.1016/j.reactfunctpolym.2021.105074
|
[30] |
Liu Y, Lin GG, Chen YH, et al. Coding and decoding stray magnetic fields for multiplexing kinetic bioassay platform[J]. Lab Chip, 2020, 20(24): 4561-71. doi:10.1039/d0lc00848f
|
[31] |
Mun SJ, Ko D, Kim HU, et al. Photopolymerization-based synthesis of uniform magnetic hydrogels and colorimetric glucose detection[J]. Materials (Basel), 2020, 13(19): 4401. doi:10.3390/ma13194401
|
[32] |
Won S, Kim S, Park JE, et al. On-demand orbital maneuver of multiple soft robots via hierarchical magnetomotility[J]. Nat Commun, 2019, 10: 4751. doi:10.1038/s41467-019-12679-4
|
[33] |
Bozuyuk U, Aghakhani A, Alapan Y, et al. Reduced rotational flows enable the translation of surface-rolling microrobots in confined spaces[J]. Nat Commun, 2022, 13(1): 6289. doi:10.1038/s41467-022-34023-z
|
[34] |
Liu Y, Cao QL, Xu HF, et al. Flow tweezing of anisotropic magnetic microrobots in a dynamic magnetic trap for active retention and localized flow sensing[J]. Lab Chip, 2024, 24(18): 4242-52. doi:10.1039/d4lc00474d
|
[35] |
Daly AC, Riley L, Segura T, et al. Hydrogel microparticles for biomedical applications[J]. Nat Rev Mater, 2020, 5(1): 20-43. doi:10.1038/s41578-019-0148-6
|
[36] |
Huang Y, Yin S, Li HW, et al. One-step fabrication of moon-shaped microrobots through in situ solidification of magnetic Janus droplets in microchannels[J]. Droplet, 2023, 2(2): e56. doi:10.1002/dro2.56
|
[37] |
Su L, Jin DD, Wang YQ, et al. Modularized microrobot with lock-and-detachable modules for targeted cell delivery in bile duct[J]. Sci Adv, 2023, 9(50): eadj0883. doi:10.1126/sciadv.adj0883
|
[38] |
Dong Y, Wang L, Zhang ZF, et al. Endoscope-assisted magnetic helical micromachine delivery for biofilm eradication in tympanostomy tube[J]. Sci Adv, 2022, 8(40): eabq8573. doi:10.1126/sciadv.abq8573
|
[39] |
Nguyen KT, Go G, Jin Z, et al. A magnetically guided self-rolled microrobot for targeted drug delivery, real-time X-ray imaging, and microrobot retrieval[J]. Adv Healthc Mater, 2021, 10(6): 2001681. doi:10.1002/adhm.202001681
|
[40] |
Aziz A, Pane S, Iacovacci V, et al. Medical imaging of microrobots: toward in vivo applications[J]. ACS Nano, 2020, 14(9): 10865-93. doi:10.1021/acsnano.0c05530
|