南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (8): 1758-1767.doi: 10.12122/j.issn.1673-4254.2025.08.20

• • 上一篇    

具有温度响应性的多模运动微米机器人可实现药物的精准递送和可控范围的药物释放

赵旭辉1,2(), 刘梦然1(), 陈曦2,3, 黄静2, 刘源2, 徐海峰2   

  1. 1.湖北工业大学现代制造质量工程湖北省重点实验室,湖北 武汉 430068
    2.中国科学院深圳先进技术研究院生物医学与健康工程研究所,广东 深圳 518055
    3.南京邮电大学电子与光学工程学院、柔性电子(未来技术)学院,江苏 南京 210023
  • 收稿日期:2025-03-11 出版日期:2025-08-20 发布日期:2025-09-05
  • 通讯作者: 刘梦然 E-mail:xh.zhao@siat.ac.cn;liumengran1991@163.com
  • 作者简介:赵旭辉,在读硕士研究生,E-mail: xh.zhao@siat.ac.cn
  • 基金资助:
    国家自然科学基金(52303167);国家自然科学基金(52203152);湖北省自然科学基金(2022CFB473);广东省普通高校重点领域专项项目(2022ZDZX3047)

Synthesis of a temperature-responsive multimodal motion microrobot capable of precise navigation for targeted controllable drug release

Xuhui ZHAO1,2(), Mengran LIU1(), Xi CHEN2,3, Jing HUANG2, Yuan LIU2, Haifeng XU2   

  1. 1.Hubei Provincial Key Laboratory of Modern Manufacture Quality Engineering, Hubei University of Technology, Wuhan 430068, China
    2.Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
    3.College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
  • Received:2025-03-11 Online:2025-08-20 Published:2025-09-05
  • Contact: Mengran LIU E-mail:xh.zhao@siat.ac.cn;liumengran1991@163.com
  • Supported by:
    National Natural Science Foundation of China(52303167)

摘要:

目的 利用温度场和磁场辅助的微流控液滴技术,合成了一种具有温度响应特性的多模运动微米机器人(MMMR),实现药物靶向递送和药物释放范围控制。 方法 通过将明胶与磁性微米颗粒混合后利用微流控液滴技术合成MMMR,在合成装置的设计中加入了温度场和磁场进行辅助,实现了机器人的磁各向异性结构。通过旋转均匀磁场控制MMMR沿预设路径进行大范围运动,并利用不同频率的平面旋转梯度磁场驱动MMMR进行局部圆周运动。MMMR装载模拟药物,通过加热进行药物释放。 结果 在垂直于平面旋转磁场的驱动下,MMMR可以实现直线运动,完成规定路径的运动。且在平面梯度旋转磁场作用下,MMMR利用旋转产生的离心力,可以实现运动半径可调的圆周运动。装载模拟药物的MMMR在磁场引导下成功到达目标位置,通过激光加热(39 ℃)融化明胶基质,精准释放药物,药物释放后,自组装的磁颗粒作为一个整体被移除。 结论 MMMR具备多模态运动能力,可实现规定路径精准导航,并能够在局部动态调控药物释放范围,具有广泛的生物医学应用潜力。

关键词: 药物递送, 微米机器人, 磁各向异性, 多模运动, 微流控合成

Abstract:

Objective To synthesize a temperature-responsive multimodal motion microrobot (MMMR) using temperature and magnetic field-assisted microfluidic droplet technology to achieve targeted drug delivery and controlled drug release. Methods Microfluidic droplet technology was utilized to synthesize the MMMR by mixing gelatin with magnetic microparticles. The microrobot possessed a magnetic anisotropy structure to allow its navigation and targeted drug release by controlling the temperature field and magnetic field. In the experiment, the MMMR was controlled to move in a wide range along a preset path by rotating a uniform magnetic field, and the local circular motion was driven by a planar rotating gradient magnetic field of different frequencies. The MMMR was loaded with simulated drugs, which were released in response to laser heating. Results Driven by a rotating magnetic field, the MMMR achieved linear motion following a predefined path. The planar gradient rotating magnetic field controlled circular motion of the MMMR with an adjustable radius, utilizing the centrifugal force generated by rotation. The drug-loaded MMMR successfully reached the target location under magnetic guidance, where the gelatin matrix was melted using laser heating for accurate drug release, after which the remaining magnetic particles were removed using magnetic field. Conclusion The MMMR possesses multimodal motion capabilities to enable precise navigation along a predefined path and dynamic regulation of drug release within the target area, thus having great potential for a wide range of biomedical applications.

Key words: drug delivery, microrobot, magnetic anisotropy, multimodal motion, microfluidic synthesis