南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (5): 1056-1062.doi: 10.12122/j.issn.1673-4254.2025.05.19
• • 上一篇
收稿日期:
2024-10-25
出版日期:
2025-05-20
发布日期:
2025-05-23
通讯作者:
安胜利
E-mail:wangzihao0101@126.com;1069766473@qq.com
作者简介:
王子皓,在读硕士研究生,E-mail: wangzihao0101@126.com
基金资助:
Zihao WANG1(), Lili TAO2, Biqing ZOU1, Shengli AN1(
)
Received:
2024-10-25
Online:
2025-05-20
Published:
2025-05-23
Contact:
Shengli AN
E-mail:wangzihao0101@126.com;1069766473@qq.com
摘要:
目的 基于MIMIC-IV数据库的回顾性临床数据,旨在评估急性肾损伤(AKI)患者在ICU入院后首个24 h平均动脉氧分压(PaO2)与死亡率的关系,并确定适宜的PaO2阈值以指导氧疗策略。 方法 根据入院后24 h内的平均动脉氧分压(PaO₂),通过受试者工作特征(ROC)曲线分析及约登指数最大化原则确定最佳PaO₂截断值(137.029 mmHg),将患者分为高氧组(PaO₂≥137 Hg)和低氧组(PaO₂<137 Hg)。采用多变量逻辑回归分析和倾向评分匹配方法评估氧水平与住院死亡率之间的关系。 结果 在18 335名患者中,46.7%的患者属于高氧组,且整体死亡率为16.9%。高氧状态与较低的院内死亡率(OR=0.78)和90 d死亡率(OR=0.77)相关,尤其在AKI 1期患者中。研究还发现PaO2与死亡率之间存在非线性关系(P<0.001)。Kaplan-Meier生存曲线显示,高氧组的90 d生存率提高(P<0.001),且高氧组的机械通气时间、血管加压药使用时间及住院/ICU时长均较短。 结论 在AKI患者中维持PaO2≥137 Hg可改善临床预后,强调了ICU治疗中目标导向氧供的重要性。
王子皓, 陶丽丽, 邹碧清, 安胜利. 重症监护病房急性肾损伤患者首次24 h动脉氧分压与死亡率相关:基于MIMIC-IV数据库[J]. 南方医科大学学报, 2025, 45(5): 1056-1062.
Zihao WANG, Lili TAO, Biqing ZOU, Shengli AN. First 24-hour arterial oxygen partial pressure is correlated with mortality in ICU patients with acute kidney injury: an analysis based on MIMIC-IV database[J]. Journal of Southern Medical University, 2025, 45(5): 1056-1062.
图2 24 h平均动脉氧分压与住院死亡率的受试者工作特征曲线分析
Fig.2 Receiver operating characteristic curve analysis of mean partial pressure of arterial oxygen (PaO2) within 24 h after ICU admission and in-hospital mortality of patients with acute kidney injury (AKI).
图3 主要及次要统计分析、KM生存曲线分析和限制性立方样条分析
Fig.3 Statistical analyses of primary and secondary outcomes, Kaplan-Meier survival curves, and relationship between PaO₂ and mortality of the patients. A: Primary and secondary outcomes. B: Kaplan-Meier survival curve for 90-day mortality. C: In-hospital mortality rates of AKI patients in different stages in the two groups (***P<0.001). D: Non-linear relationship between PaO₂ and in-hospital mortality. E: Non-linear relationship between PaO₂ and 90-day mortality.
Outcome | Total | PaO2≥137.029 mm Hg | PaO2<137.029 mm Hg | P |
---|---|---|---|---|
Before PSM | ||||
Patients (n) | 18 335 | 8565 | 9770 | |
In-hospital mortality [n (%)] | 3099 (16.9) | 840 (9.8) | 2259 (23.1) | <0.001 |
90-day mortality [n (%)] | 3342 (18.2) | 912 (10.6) | 2430 (24.9) | <0.001 |
CRRT [n (%)] | 312 (1.7) | 86 (1.0) | 226 (2.3) | <0.001 |
RRT [n (%)] | 1068 (5.8) | 282 (3.3) | 786 (8.0) | <0.001 |
Duration of ventilator [h, median (IQR)] | 41.0 (17.0-103.7) | 16.0 (7.8-40.0) | 23.0 (10.6-70.0) | <0.001 |
Duration of vasopressor [h, median (IQR)] | 29.4 (11.3-67.4) | 14.1 (3.7-35.0) | 19.4 (6.0-48.9) | <0.001 |
LOS Hospital (day) | 9.0 (5.0-16.0) | 8.0 (5.0-13.0) | 8.0 (5.0-15.0) | <0.001 |
LOS ICU (day) | 3.2 (1.9-6.6) | 2.3 (1.3-4.6) | 2.9 (1.6-5.6) | <0.001 |
After PSM | ||||
Patients (n) | 8838 | 4419 | 4419 | |
In-hospital mortality [n (%)] | 1494 (16.9) | 672 (15.2) | 822 (18.6) | <0.001 |
90-day mortality [n (%)] | 1616 (18.3) | 724 (16.4) | 892 (20.2) | <0.001 |
CRRT [n (%)] | 142 (1.6) | 77 (1.7) | 65 (1.5) | 0.310 |
RRT [n (%)] | 502 (5.7) | 234 (5.3) | 268 (6.1) | 0.118 |
Duration of ventilator [h, median (IQR)] | 33.0 (14.8-89.3) | 24.0 (11.0-68.5) | 28.0 (12.7-79.0) | <0.001 |
Duration of vasopressor [h, median (IQR)] | 23.8 (8.6-57.4) | 20.5 (6.3-53.0) | 22.2 (7.4-55.4) | 0.068 |
LOS Hospital | 9.0 (6.0-16.0) | 9.0 (5.0-15.0) | 9.0 (5.0-16.0) | 0.008 |
LOS ICU | 3.3 (1.9-6.8) | 3.0 (1.7-6.0) | 3.1 (1.8-6.4) | <0.001 |
表1 两组匹配前后的结果
Tab.1 Outcomes of the patients in the two groups before and after matching
Outcome | Total | PaO2≥137.029 mm Hg | PaO2<137.029 mm Hg | P |
---|---|---|---|---|
Before PSM | ||||
Patients (n) | 18 335 | 8565 | 9770 | |
In-hospital mortality [n (%)] | 3099 (16.9) | 840 (9.8) | 2259 (23.1) | <0.001 |
90-day mortality [n (%)] | 3342 (18.2) | 912 (10.6) | 2430 (24.9) | <0.001 |
CRRT [n (%)] | 312 (1.7) | 86 (1.0) | 226 (2.3) | <0.001 |
RRT [n (%)] | 1068 (5.8) | 282 (3.3) | 786 (8.0) | <0.001 |
Duration of ventilator [h, median (IQR)] | 41.0 (17.0-103.7) | 16.0 (7.8-40.0) | 23.0 (10.6-70.0) | <0.001 |
Duration of vasopressor [h, median (IQR)] | 29.4 (11.3-67.4) | 14.1 (3.7-35.0) | 19.4 (6.0-48.9) | <0.001 |
LOS Hospital (day) | 9.0 (5.0-16.0) | 8.0 (5.0-13.0) | 8.0 (5.0-15.0) | <0.001 |
LOS ICU (day) | 3.2 (1.9-6.6) | 2.3 (1.3-4.6) | 2.9 (1.6-5.6) | <0.001 |
After PSM | ||||
Patients (n) | 8838 | 4419 | 4419 | |
In-hospital mortality [n (%)] | 1494 (16.9) | 672 (15.2) | 822 (18.6) | <0.001 |
90-day mortality [n (%)] | 1616 (18.3) | 724 (16.4) | 892 (20.2) | <0.001 |
CRRT [n (%)] | 142 (1.6) | 77 (1.7) | 65 (1.5) | 0.310 |
RRT [n (%)] | 502 (5.7) | 234 (5.3) | 268 (6.1) | 0.118 |
Duration of ventilator [h, median (IQR)] | 33.0 (14.8-89.3) | 24.0 (11.0-68.5) | 28.0 (12.7-79.0) | <0.001 |
Duration of vasopressor [h, median (IQR)] | 23.8 (8.6-57.4) | 20.5 (6.3-53.0) | 22.2 (7.4-55.4) | 0.068 |
LOS Hospital | 9.0 (6.0-16.0) | 9.0 (5.0-15.0) | 9.0 (5.0-16.0) | 0.008 |
LOS ICU | 3.3 (1.9-6.8) | 3.0 (1.7-6.0) | 3.1 (1.8-6.4) | <0.001 |
Groups | N | Outcomes | OR | 95% CI | P |
---|---|---|---|---|---|
Sensitivity analysis A | 7282 | In-hospital | 0.84 | 0.75-0.95 | 0.006 |
90-day | 0.85 | 0.76-0.96 | 0.007 | ||
Sensitivity analysis B | 7475 | In-hospital | 0.84 | 0.74-0.95 | 0.004 |
90-day | 0.84 | 0.74-0.94 | 0.003 |
表2 两组匹配前后的敏感性分析
Tab.2 Sensitivity analysis of the two groups before and after matching
Groups | N | Outcomes | OR | 95% CI | P |
---|---|---|---|---|---|
Sensitivity analysis A | 7282 | In-hospital | 0.84 | 0.75-0.95 | 0.006 |
90-day | 0.85 | 0.76-0.96 | 0.007 | ||
Sensitivity analysis B | 7475 | In-hospital | 0.84 | 0.74-0.95 | 0.004 |
90-day | 0.84 | 0.74-0.94 | 0.003 |
1 | Hoste EAJ, Bagshaw SM, Bellomo R, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study[J]. Intensive Care Med, 2015, 41(8): 1411-23. |
2 | Liu KD, Goldstein SL, Vijayan A, et al. AKI! Now Initiative: Recommendations for Awareness, Recognition, and Management of AKI [J]. CJASN 2020, 15(12):1838-47. |
3 | Manotham K, Tanaka T, Matsumoto M, et al. Transdifferentiation of cultured tubular cells induced by hypoxia [J]. Kidney International 2004, 65(3): 871-80. |
4 | Khan S, Cleveland RP, Koch CJ, et al. Hypoxia induces renal tubular epithelial cell apoptosis in chronic renal disease [J]. Lab Invest 1999, 79(9):1089-99. |
5 | Ngo JP, Lankadeva YR, Zhu MZL, et al. Factors that confound the prediction of renal medullary oxygenation and risk of acute kidney injury from measurement of bladder urine oxygen tension [J]. Acta Physiologica 2019, 227(1): e13294. |
6 | Scholz H, Boivin FJ, Schmidt-Ott KM, et al. Kidney physiology and susceptibility to acute kidney injury: implications for renoprotection[J]. Nat Rev Nephrol, 2021, 17(5): 335-49. |
7 | He XR, Su FH, Xie KL, et al. Should hyperoxia be avoided during sepsis? an experimental study in ovine peritonitis[J]. Crit Care Med, 2017, 45(10): e1060-7. |
8 | Post EH, Kellum JA, Bellomo R, et al. Renal perfusion in sepsis: from macro- to microcirculation[J]. Kidney Int, 2017, 91(1): 45-60. |
9 | Chu DK, Kim LH, Young PJ, et al. Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis[J]. Lancet, 2018, 391(10131): 1693-705. |
10 | Singer M, Young PJ, Laffey JG, et al. Dangers of hyperoxia[J]. Crit Care, 2021, 25(1): 440. |
11 | McGuinness SP, Parke RL, Drummond K, et al. A multicenter, randomized, controlled phase IIb trial of avoidance of hyperoxemia during cardiopulmonary bypass[J]. Anesthesiology, 2016, 125(3): 465-73. |
12 | Hope Kilgannon J, Jones AE, Shapiro NI, et al. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality[J]. JAMA, 2010, 303(21): 2165-71. |
13 | Beshish AG, Jahadi O, Mello A, et al. Hyperoxia during cardiopulmonary bypass is associated with mortality in infants undergoing cardiac surgery[J]. Pediatr Crit Care Med, 2021, 22(5): 445-53. |
14 | Girardis M, Busani S, Damiani E, et al. Effect of conservative vs conventional oxygen therapy on mortality among patients in an intensive care unit: the oxygen-ICU randomized clinical trial[J]. JAMA, 2016, 316(15): 1583-9. |
15 | Helmerhorst HJF, Arts DL, Schultz MJ, et al. Metrics of arterial hyperoxia and associated outcomes in critical care[J]. Crit Care Med, 2017, 45(2): 187-95. |
16 | Vaahersalo J, Bendel S, Reinikainen M, et al. Arterial blood gas tensions after resuscitation from out-of-hospital cardiac arrest: associations with long-term neurologic outcome[J]. Crit Care Med, 2014, 42(6): 1463-70. |
17 | Martín-Fernández M, Heredia-Rodríguez M, González-Jiménez I, et al. Hyperoxemia in postsurgical sepsis/septic shock patients is associated with reduced mortality[J]. Crit Care, 2022, 26(1): 4. |
18 | Raimundo M, Crichton S, Syed Y, et al. Low systemic oxygen delivery and BP and risk of progression of early AKI[J]. Clin J Am Soc Nephrol, 2015, 10(8): 1340-9. |
19 | Wahhabaghai H, Rasoulian B, Esmaili M, et al. Hyperoxia-induced protection against rat’s renal ischemic damage: relation to oxygen exposure time[J]. Ren Fail, 2009, 31(6): 514-21. |
20 | Wahhabaghai H, Heidari R, Zeinoddini A, et al. Hyperoxia-induced preconditioning against renal ischemic injury is mediated by reactive oxygen species but not related to heat shock proteins 70 and 32[J]. Surgery, 2015, 157(6): 1014-22. |
21 | Nensén O, Hansell P, Palm F. Intrarenal oxygenation determines kidney function during the recovery from an ischemic insult[J]. Am J Physiol Renal Physiol, 2020, 319(6): F1067-72. |
22 | Ergin B, Akin S, Ince C. Kidney microcirculation as a target for innovative therapies in AKI[J]. J Clin Med, 2021, 10(18): 4041. |
23 | Abdelkader A, Ho J, Ow CPC, et al. Renal oxygenation in acute renal ischemia-reperfusion injury[J]. Am J Physiol Renal Physiol, 2014, 306(9): F1026-38. |
24 | Calzavacca P, Evans RG, Bailey M, et al. Cortical and medullary tissue perfusion and oxygenation in experimental septic acute kidney injury[J]. Crit Care Med, 2015, 43(10): e431-9. |
25 | Lankadeva YR, Kosaka J, Evans RG, et al. Urinary oxygenation as a surrogate measure of medullary oxygenation during angiotensin II therapy in septic acute kidney injury[J]. Crit Care Med, 2018, 46(1): e41-8. |
26 | Iguchi N, Lankadeva YR, Mori TA, et al. Furosemide reverses medullary tissue hypoxia in ovine septic acute kidney injury[J]. Am J Physiol Regul Integr Comp Physiol, 2019, 317(2): R232-9. |
27 | Lankadeva YR, Kosaka J, Iguchi N, et al. Effects of fluid bolus therapy on renal perfusion, oxygenation, and function in early experimental septic kidney injury[J]. Crit Care Med, 2019, 47(1): e36-43. |
28 | Evans RG, Smith JA, Wright C, et al. Urinary oxygen tension: a clinical window on the health of the renal medulla[J]? Am J Physiol Regul Integr Comp Physiol, 2014, 306(1): R45-50. |
29 | Silverton NA, Lofgren LR, Hall IE, et al. Noninvasive urine oxygen monitoring and the risk of acute kidney injury in cardiac surgery[J]. Anesthesiology, 2021, 135(3): 406-18. |
30 | Zhu MZL, Martin A, Cochrane AD, et al. Urinary hypoxia: an intraoperative marker of risk of cardiac surgery-associated acute kidney injury[J]. Nephrol Dial Transplant, 2018, 33(12): 2191-201. |
31 | Shen YF, Ru WZ, Cao LY, et al. Impact of partial pressure of oxygen trajectories on the incidence of acute kidney injury in patients under-going cardiopulmonary bypass[J]. J Cardiol, 2022, 79(4): 545-50. |
32 | Efrati S, Berman S, Ben Aharon G, et al. Application of normobaric hyperoxia therapy for amelioration of haemorrhagic shock-induced acute renal failure[J]. Nephrol Dial Transplant, 2008, 23(7): 2213-22. |
33 | Fisher M, Neugarten J, Bellin E, et al. AKI in hospitalized patients with and without COVID-19: a comparison study[J]. J Am Soc Nephrol, 2020, 31(9): 2145-57. |
34 | Zahid U, Ramachandran P, Spitalewitz S, et al. Acute kidney injury in COVID-19 patients: an inner city hospital experience and policy implications[J]. Am J Nephrol, 2020, 51(10): 786-96. |
35 | Jing L, Chen WH, Zhao L, et al. Acute kidney injury following adult lung transplantation[J]. Chin Med J, 2021, 135(2): 172-80. |
36 | Shen HY, Holliday M, Sheikh-Hamad D, et al. Sirtuin-3 mediates sex differences in kidney ischemia-reperfusion injury[J]. Transl Res, 2021, 235: 15-31. |
37 | Ruetzler K, Cohen B, Leung S, et al. Supplemental intraoperative oxygen does not promote acute kidney injury or cardiovascular complications after noncardiac surgery: subanalysis of an alternating intervention trial[J]. Anesth Analg, 2020, 130(4): 933-40. |
[1] | 戈 悦, 李建伟, 梁宏开, 侯六生, 左六二, 陈 珍, 卢剑海, 赵 新, 梁静漪, 彭 岚, 包静娜, 段佳欣, 刘 俐, 毛可晴, 曾振华, 胡鸿彬, 陈仲清. VA-ECMO患者院内死亡风险预测模型的构建及验证:一项多中心、回顾性、病例对照研究[J]. 南方医科大学学报, 2024, 44(3): 491-498. |
[2] | 房尚萍, 孙任珂, 苏 慧, 翟科程, 项 毓, 高杨梦娜, 郭文俊. 绿原酸减轻脓毒症诱导的小鼠急性肾损伤:基于抑制caspase-1经典细胞焦亡信号通路[J]. 南方医科大学学报, 2024, 44(2): 317-323. |
[3] | 李佳馨, 刘毅, 刘向杰, 徐龙河, 刘永哲. 肾素-血管紧张素系统可预测腹腔镜肾根治术后的急性肾损伤[J]. 南方医科大学学报, 2024, 44(11): 2220-2226. |
[4] | 郭晶晶, 张文龙, 梁 飘, 张龙军, 彭凌音, 闵钰琦, 潘小珍, 杨志英, 邓华菲. 葛根素减轻LPS诱导的小鼠急性肾损伤:基于调节SIRT1/NF-κB信号通路[J]. 南方医科大学学报, 2023, 43(7): 1248-1253. |
[5] | 苏雨薇, 孙 闻, 王 迪, 董钰妍, 丁 莹, 徐龙河, 刘永哲. 右美托咪定不能降低腹腔镜下根治性肾切除术后急性和慢性肾脏病的发病率:基于倾向性评分匹配法[J]. 南方医科大学学报, 2023, 43(4): 654-659. |
[6] | 陈 娜, 李仁华, 王 锷, 胡德华, 唐朝辉. 开颅动脉瘤夹闭术患者的术后心血管不良事件及预后:一项回顾性队列研究[J]. 南方医科大学学报, 2022, 42(7): 1095-1099. |
[7] | 张 舒, 苏保林, 王亮亮, 汤水福, 陈刚毅. 丹参酮IIA通过抑制RIP3/FUNDC1信号通路减轻LPS诱导的小鼠肾小管上皮细胞凋亡[J]. 南方医科大学学报, 2022, 42(12): 1852-1857. |
[8] | 肖冠华, 胡鸿彬, 吴 凤, 沙 桐, 曾振华, 黄巧冰, 李海军, 韩家发, 宋文鸿, 陈仲清, 蔡淑敏. 武汉市COVID-19住院患者急性肾损伤的发生:287例单中心回顾性分析[J]. 南方医科大学学报, 2021, 41(2): 157-163. |
[9] | 陈海琴, 石庆平, 孔令提, 桑 冉, 余美玲, 苏 君, 朱裕林, 朱锦秀. 重症感染患者接受万古霉素治疗个体化药学服务临床价值评估——一项基于真实世界数据的回顾性病例对照试验[J]. 南方医科大学学报, 2020, 40(10): 1380-1389. |
[10] | 宋慧敏,王 静,胡 畅,刘 畅,李建国. 胆汁淤积和缺氧性肝炎对ICU患者预后的影响:基于重症监护-III数据库的回顾性分析[J]. 南方医科大学学报, 2020, 40(06): 771-777. |
[11] | 谭继翔,何进,秦文熠,赵林. 槲皮素通过抑制TLR4/NF-κB通路缓解脂多糖诱导的急性肾损伤[J]. 南方医科大学学报, 2019, 39(05): 598-. |
[12] | 刘崇斌,黄柳维,李彩珍,沈燕婷,王骏. 阻断Pannexin-1 可减轻肾脏组织炎症细胞浸润和缓解顺铂诱导的急性肾损伤[J]. 南方医科大学学报, 2019, 39(05): 508-. |
[13] | 霍锐,戴敏,樊艺,周竞峥,李莉,祖建. miRNA-29a和miRNA-10a-5p 对脓毒症所致急性肾损伤患者28 d 死亡率的预测价值[J]. 南方医科大学学报, 2017, 37(05): 646-. |
[14] | 吴光勇,庄恺,刘宇,王知非. 尿肝型脂肪酸结合蛋白在颅脑外伤中应用价值[J]. 南方医科大学学报, 2016, 36(11): 1527-. |
[15] | 雷莹,聂晟,孙丹华,宾伟,徐欣. 中国危重症住院患者急性肾损伤的流行病学分析[J]. 南方医科大学学报, 2016, 36(06): 744-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||