南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (4): 844-852.doi: 10.12122/j.issn.1673-4254.2025.04.20

• • 上一篇    

基于中心指导与交替优化的低剂量CT图像恢复方法

张晓瑜(), 王昊, 曾栋, 边兆英()   

  1. 南方医科大学生物医学工程学院//广东省医学图像处理重点实验室,广东 广州 510515
  • 收稿日期:2024-11-14 出版日期:2025-04-20 发布日期:2025-04-28
  • 通讯作者: 边兆英 E-mail:zxy4118050022@smu.edu.cn;zybian@smu.edu.cn
  • 作者简介:张晓瑜,硕士,E-mail: zxy4118050022@smu.edu.cn
  • 基金资助:
    国家自然科学基金(U21A6005)

A low-dose CT image restoration method based on central guidance and alternating optimization

Xiaoyu ZHANG(), Hao WANG, Dong ZENG, Zhaoying BIAN()   

  1. School of Biomedical Engineering, Southern Medical University/ Guangdong Provincial Key Laboratory of Medical Image Processing, Guangzhou 510515, China
  • Received:2024-11-14 Online:2025-04-20 Published:2025-04-28
  • Contact: Zhaoying BIAN E-mail:zxy4118050022@smu.edu.cn;zybian@smu.edu.cn
  • Supported by:
    National Natural Science Fundation of China(U21A6005)

摘要:

目的 提出一种基于中心指导与交替优化的低剂量CT图像恢复方法(FedGP)。 方法 FedGP框架革新了传统的联邦学习模式,采用无固定中央服务器的结构,每个机构交替担任中心服务器。该方法采用机构调制的CT图像恢复网络作为客户端局部训练的核心,通过中心指导和交替优化的联邦学习方法,中央服务器利用本地标记数据指导客户端局部网络训练,从而显著提升多机构低剂量CT图像恢复模型的泛化能力。 结果 在低管电流和稀疏角度CT图像恢复任务中,与其他对比的联邦学习方法相比,FedGP方法的CT图像结果在视觉和定量评估上均有明显优势,FedGP获得了最高的PSNR指标(40.25和38.84)、最高的SSIM指标(0.95和0.92)以及最低的RMSE指标(2.39和2.56)。此外,FedGP的消融实验结果表明基于中心指导与交替优化的联邦学习框架能更好适应各机构之间的数据异构性,确保模型在各类成像条件下的稳健性和泛化能力。 结论 本文提出的FedGP为解决CT成像异质性问题提供了一个更灵活的FL框架,可以更好地适应不同参与方的数据特征,提高模型在多样化成像几何的泛化能力。

关键词: 计算机断层成像, 联邦学习, 图像恢复, 数据异质性

Abstract:

Objective We propose a low-dose CT image restoration method based on central guidance and alternating optimization (FedGP). Methods The FedGP framework revolutionizes the traditional federated learning model by adopting a structure without a fixed central server, where each institution alternatively serves as the central server. This method uses an institution-modulated CT image restoration network as the core of client-side local training. Through a federated learning approach of central guidance and alternating optimization, the central server leverages local labeled data to guide client-side network training to enhance the generalization capability of the CT imaging model across multiple institutions. Results In the low-dose and sparse-view CT image restoration tasks, the FedGP method showed significant advantages in both visual and quantitative evaluation and achieved the highest PSNR (40.25 and 38.84), the highest SSIM (0.95 and 0.92), and the lowest RMSE (2.39 and 2.56). Ablation study of FedGP demonstrated that compared with FedGP(w/o GP) without central guidance, the FedGP method better adapted to data heterogeneity across institutions, thus ensuring robustness and generalization capability of the model in different imaging conditions. Conclusions FedGP provides a more flexible FL framework to solve the problem of CT imaging heterogeneity and well adapts to multi-institutional data characteristics to improve generalization ability of the model under diverse imaging geometric configurations.

Key words: computed tomography, federated learning, image restoration, data heterogeneity