1 |
Martin SS, Aday AW, Almarzooq ZI, et al. 2024 heart disease and stroke statistics: a report of US and global data from the American heart association[J]. Circulation, 2024, 149(8): e347-913.
|
2 |
Vinding NE, Kristensen SL, Rørth R, et al. Ischemic stroke severity and mortality in patients with and without atrial fibrillation[J]. J Am Heart Assoc, 2022, 11(4): e022638.
|
3 |
Staerk L, Sherer JA, Ko D, et al. Atrial fibrillation: epidemiology, pathophysiology, and clinical outcomes[J]. Circ Res, 2017, 120(9): 1501-17.
|
4 |
Shi SB, Tang YH, Zhao QY, et al. Prevalence and risk of atrial fibrillation in China: a national cross-sectional epidemiological study[J]. Lancet Reg Health West Pac, 2022, 23: 100439.
|
5 |
van den Berg NWE, Neefs J, Kawasaki M, et al. Extracellular matrix remodeling precedes atrial fibrillation: Results of the PREDICT-AF trial[J]. Heart Rhythm, 2021, 18(12): 2115-25.
|
6 |
Kashou AH, Adedinsewo DA, Siontis KC, et al. Artificial intelligence-enabled ECG: physiologic and pathophysiologic insights and implications[J]. Compr Physiol, 2022, 12(3): 3417-24.
|
7 |
Christopoulos G, Graff-Radford J, Lopez CL, et al. Artificial intelligence-electrocardiography to predict incident atrial fibrillation: a population-based study[J]. Circ Arrhythm Electrophysiol, 2020, 13(12): e009355.
|
8 |
Khurshid S, Friedman S, Reeder C, et al. ECG-based deep learning and clinical risk factors to predict atrial fibrillation[J]. Circulation, 2022, 145(2): 122-33.
|
9 |
Noseworthy PA, Attia ZI, Brewer LC, et al. Assessing and mitigating bias in medical artificial intelligence: the effects of race and ethnicity on a deep learning model for ECG analysis[J]. Circ Arrhythm Electrophysiol, 2020, 13(3): e007988.
|
10 |
李盼盼, 韩宇臣, 李 峰, 等. 阵发性心房颤动发作风险的人工智能预测模型[J]. 中国心血管病研究, 2024, 22(3): 196-202.
|
11 |
奚丽婧, 郭昭艳, 杨雪珂, 等. LASSO及其拓展方法在回归分析变量筛选中的应用[J]. 中华预防医学杂志, 2023, 57(1): 107-11.
|
12 |
Manigault AW, Sheinkopf SJ, Silverman HF, et al. Newborn cry acoustics in the assessment of neonatal opioid withdrawal syndrome using machine learning[J]. JAMA Netw Open, 2022, 5(10): e2238783.
|
13 |
Lindholm D, Lindbäck J, Armstrong PW, et al. Biomarker-based risk model to predict cardiovascular mortality in patients with stable coronary disease[J]. J Am Coll Cardiol, 2017, 70(7): 813-26.
|
14 |
Siontis KC, Noseworthy PA, Attia ZI, et al. Artificial intelligence-enhanced electrocardiography in cardiovascular disease management[J]. Nat Rev Cardiol, 2021, 18: 465-78.
|
15 |
MacFarlane PW, Katibi IA, Hamde ST, et al. Racial differences in the ECG: selected aspects[J]. J Electrocardiol, 2014, 47(6): 809-14.
|
16 |
Schnabel RB, Sullivan LM, Levy D, et al. Development of a risk score for atrial fibrillation (Framingham Heart Study): a community-based cohort study[J]. Lancet, 2009, 373(9665): 739-45.
|
17 |
Alonso A, Krijthe BP, Aspelund T, et al. Simple risk model predicts incidence of atrial fibrillation in a racially and geographically diverse population: the CHARGE-AF consortium[J]. J Am Heart Assoc, 2013, 2(2): e000102.
|
18 |
Li YG, Pastori D, Farcomeni A, et al. A simple clinical risk score (C2HEST) for predicting incident atrial fibrillation in Asian subjects derivation in 471, 446 Chinese subjects, with internal validation and external application in 451, 199 Korean subjects[J]. Chest, 2019, 155(3): 510-8.
|
19 |
Alexander B, Milden J, Hazim B, et al. New electrocardiographic score for the prediction of atrial fibrillation: The MVP ECG risk score (morphology-voltage-P-wave duration)[J]. Ann Noninvasive Electrocardiol, 2019, 24(6): e12669.
|
20 |
Kreimer F, Aweimer A, Pflaumbaum A, et al. Impact of P-wave indices in prediction of atrial fibrillation-Insight from loop recorder analysis[J]. Ann Noninvasive Electrocardiol, 2021, 26(5): e12854.
|
21 |
Rasmussen MU, Kumarathurai P, Fabricius-Bjerre A, et al. P-wave indices as predictors of atrial fibrillation[J]. Ann Noninvasive Electrocardiol, 2020, 25(5): e12751.
|
22 |
Chen LY, Ribeiro ALP, Platonov PG, et al. P wave parameters and indices: a critical appraisal of clinical utility, challenges, and future research-a consensus document endorsed by the international society of electrocardiology and the international society for holter and noninvasive electrocardiology[J]. Circ Arrhythm Electrophysiol, 2022, 15(4): e010435.
|
23 |
Eranti A, Carlson J, Kenttä T, et al. Orthogonal P-wave morphology, conventional P-wave indices, and the risk of atrial fibrillation in the general population using data from the Finnish Hospital Discharge Register[J]. Europace, 2020, 22(8): 1173-81.
|
24 |
Cheng S, Keyes MJ, Larson MG, et al. Long-term outcomes in individuals with prolonged PR interval or first-degree atrioventricular block[J]. JAMA, 2009, 301(24): 2571-7.
|
25 |
Macfarlane PW. The influence of age and sex on the electrocardiogram[J]. Adv Exp Med Biol, 2018, 1065: 93-106.
|
26 |
Joglar JA, Chung MK, Armbruster AL, et al. 2023 ACC/AHA/ACCP/HRS guideline for the diagnosis and management of atrial fibrillation: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines[J]. Circulation, 2024, 149(1): e1-156.
|