南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (11): 2350-2357.doi: 10.12122/j.issn.1673-4254.2025.11.07
李孝媛1(
), 张逸悦1, 顾雨铖1, 陈霓红2, 钱鑫宇1, 张朋俊1, 郝佳欣3, 王峰1(
)
收稿日期:2025-07-03
出版日期:2025-11-20
发布日期:2025-11-28
通讯作者:
王峰
E-mail:xiaoyuanlee0317@foxmail.com;fengwangcn@hotmail.com
作者简介:李孝媛,在读博士研究生,主治医师,E-mail: xiaoyuanlee0317@foxmail.com
基金资助:
Xiaoyuan LI1(
), Yiyue ZHANG1, Yucheng GU1, Nihong CHEN2, Xinyu QIAN1, Pengjun ZHANG1, Jiaxin HAO3, Feng WANG1(
)
Received:2025-07-03
Online:2025-11-20
Published:2025-11-28
Contact:
Feng WANG
E-mail:xiaoyuanlee0317@foxmail.com;fengwangcn@hotmail.com
摘要:
目的 通过精确的空间映射,探索阿尔茨海默病(AD)患者Tau蛋白与氢质子磁共振波谱(1H-MRS)所检测的脑内生化代谢物间的潜在关联。 方法 收集2022年4月~2024年12月南京市第一医院核医学科共64例AD Tau+患者(PT组)和29例健康志愿者(HC组)的18F-APN-1607 PET/MR脑显像及同步采集的多体素1H-MRS数据,对PET/MR数据进行视觉分析和基于体素的分析,以研究AD患者Tau蛋白沉积模式。在1H-MRS扫描视野内筛选有效体素,并记录各有效体素内的PET标准摄取值比率(SUVr)以及各代谢物水平(含代谢物比值):N-乙酰天门冬氨酸(NAA)、胆碱(Cho)、肌酸(Cr)、NAA/Cr、Cho/Cr。通过对Tau PET视觉分析,将PT组内各有效体素分为Tau阳性体素(Tau+体素)和Tau阴性体素(Tau-体素)。比较各组间PET和1H-MRS指标的差异,并分析Tau+体素内代谢物水平(含代谢物比值)与Tau PET SUVr之间的相关性。 结果 在双侧额叶(30.07%)、顶叶(29.96%)、颞叶(21.07%)、枕叶(15.89%),PT组相较于HC组存在显著的Tau蛋白沉积。1H-MRS扫描视野内共纳入有效体素2236个,PT组体素1422个(其中Tau+体素994个、Tau-体素428个),HC组体素814个。相较于HC组,PT组的NAA水平降低、SUVr增高(P<0.05)。亚组分析结果显示,与Tau-体素相比,Tau+体素的SUVr增高、Cr和Cho/Cr降低(P<0.05);与HC组相比,Tau+体素的SUVr增高、Cr降低(P<0.05);与HC组相比,Tau-体素的NAA降低(P=0.004)。Cho和NAA/Cr在各亚组间的差异无统计学意义(P>0.05)。Tau+体素内NAA、Cho、Cr与SUVr呈负相关(P<0.001)。 结论 进展期AD患者脑内Tau蛋白沉积显著且和部分代谢物水平改变相关。NAA水平的降低在Tau蛋白沉积前期及早期阶段更明显,Cr水平的改变在Tau蛋白沉积区域更显著,提示NAA及Cr可以为AD患者脑内Tau蛋白沉积的潜在生物标志物,为AD的早期诊断和疗效评估提供依据。
李孝媛, 张逸悦, 顾雨铖, 陈霓红, 钱鑫宇, 张朋俊, 郝佳欣, 王峰. Tau蛋白沉积与脑代谢物的关联性:N-乙酰天门冬氨酸与肌酸作为进展期阿尔茨海默病的潜在生物标志物[J]. 南方医科大学学报, 2025, 45(11): 2350-2357.
Xiaoyuan LI, Yiyue ZHANG, Yucheng GU, Nihong CHEN, Xinyu QIAN, Pengjun ZHANG, Jiaxin HAO, Feng WANG. Association between Tau protein deposition and brain metabolites: N-acetylaspartate and creatine as potential biomarkers for advanced Alzheimer's disease[J]. Journal of Southern Medical University, 2025, 45(11): 2350-2357.
图1 1例AD患者的PET/MRS图像
Fig.1 PET/MRS imaging of a female AD patient (76 years old, education years: 0; MMSE: 0; MoCa: 0; CDR: 3). A: Coronal, sagittal, and axial localization images of MRS acquisition site, where the yellow box indicates the homogenization region, the white box denotes the MRS acquisition area, and the blue box outlines the selected voxel. B: Co-registered PET/MR fusion image at the same level as the MRS acquisition.
| Variables | PT group (n=64) | HC group (n=29) | P |
|---|---|---|---|
| Gender (male/female, n) | 25/39 | 13/16 | 0.767 |
| Age (year) | 68.48±8.98 | 61.53±9.81 | 0.382 |
| Education years (year) | 9.46±3.56 | 11.94±3.05 | 0.440 |
| MMSE score (point) | 19.45±7.55 | 28.59±1.45 | <0.001 |
| MoCA score (point) | 15.63±7.61 | 26.66±2.83 | <0.001 |
| CDR score (point) | 0.96±0.70 | 0.02±0.09 | <0.001 |
表1 PT组和HC组临床资料比较
Tab.1 Comparison of clinical information of the AD patients (PT group) and the healthy control (HC) group (Mean±SD)
| Variables | PT group (n=64) | HC group (n=29) | P |
|---|---|---|---|
| Gender (male/female, n) | 25/39 | 13/16 | 0.767 |
| Age (year) | 68.48±8.98 | 61.53±9.81 | 0.382 |
| Education years (year) | 9.46±3.56 | 11.94±3.05 | 0.440 |
| MMSE score (point) | 19.45±7.55 | 28.59±1.45 | <0.001 |
| MoCA score (point) | 15.63±7.61 | 26.66±2.83 | <0.001 |
| CDR score (point) | 0.96±0.70 | 0.02±0.09 | <0.001 |
图2 1例HC和1例PT组AD患者的18F-APN-1607 PET/MR融合图像
Fig.2 18F-APN-1607 PET/MR fusion imaging of a healthy control individual and an AD patient. A-C: Axial, coronal, and sagittal PET/MR fusion images of the brain of a male healthy control individual (72 years old, education years: 12; MMSE: 28, MoCa: 29; CDR: 0), showing physiological uptake in the choroid plexus without significant deposition of Tau protein in the remaining cerebrum and cerebellum. D-F: Axial, coronal, and sagittal PET/MR fusion images of the brain of a female AD patient (58 years old, education years: 12; MMSE: 5; MoCa: 2; CDR: 2) with diffuse and heterogeneous Tau protein deposition in the bilateral frontal, parietal, temporal, and occipital cortical regions. The color bar in the figure represents SUV.
图3 基于体素的分析方法得到的PT组Tau蛋白沉积显著增加的区域
Fig.3 Regions of significantly increased Tau protein deposition in the PT group as determined by voxel-based analysis methods. The color bar in the figure represents the statistical t-values; L: Left cerebral hemisphere; R: Right cerebral hemisphere.
| Variables | PT group | HC group | P |
|---|---|---|---|
| Voxel (n) | 1422 | 814 | - |
| Cr | 29.02±12.07 | 28.97±10.71 | 0.063 |
| Cho | 24.58±11.16 | 24.47±11.40 | 0.829 |
| NAA | 45.02±20.54 | 47.03±18.84 | 0.022 |
| Cho/Cr | 0.856±0.239 | 0.864±0.219 | 0.406 |
| NAA/Cr | 1.660±0.663 | 1.742±0.564 | 0.065 |
| SUVr | 1.604±0.877 | 0.902±0.212 | <0.001 |
表2 PT组和HC组代谢物水平(含代谢物比值)和Tau PET SUVr组间比较结果
Tab.2 Inter-group comparison of metabolite levels (or ratios) and Tau PET standardized uptake values between PT group and HC group (Mean±SD)
| Variables | PT group | HC group | P |
|---|---|---|---|
| Voxel (n) | 1422 | 814 | - |
| Cr | 29.02±12.07 | 28.97±10.71 | 0.063 |
| Cho | 24.58±11.16 | 24.47±11.40 | 0.829 |
| NAA | 45.02±20.54 | 47.03±18.84 | 0.022 |
| Cho/Cr | 0.856±0.239 | 0.864±0.219 | 0.406 |
| NAA/Cr | 1.660±0.663 | 1.742±0.564 | 0.065 |
| SUVr | 1.604±0.877 | 0.902±0.212 | <0.001 |
| Variables | Tau+voxel | Tau-voxel | HC voxel | P | P1 | P2 | P3 |
|---|---|---|---|---|---|---|---|
| Voxel (n) | 994 | 428 | 814 | - | - | - | |
| Cr | 27.11±11.92 | 29.84±12.05 | 28.97±10.71 | <0.001 | 0.004 | 0.495 | <0.001 |
| Cho | 24.90±10.92 | 23.82±11.66 | 24.47±11.40 | 0.242 | - | - | - |
| NAA | 45.82±20.17 | 43.17±21.28 | 47.03±18.84 | 0.005 | 0.596 | 0.004 | 0.065 |
| Cho/Cr | 0.844±0.246 | 0.882±0.209 | 0.864±0.219 | 0.014 | 0.212 | 0.592 | 0.015 |
| NAA/Cr | 1.676±1.380 | 1.622±0.588 | 1.742±0.564 | 0.119 | - | - | - |
| SUVr | 1.921±0.871 | 0.870±0.149 | 0.902±0.212 | <0.001 | <0.001 | 0.999 | <0.001 |
表3 PT组体素亚分组后代谢物水平(含代谢物比值)和Tau PET SUVr组间比较结果
Tab.3 Inter-group comparison of metabolite levels (or ratios) and Tau PET SUVr following subgrouping of PT group voxels (Mean±SD)
| Variables | Tau+voxel | Tau-voxel | HC voxel | P | P1 | P2 | P3 |
|---|---|---|---|---|---|---|---|
| Voxel (n) | 994 | 428 | 814 | - | - | - | |
| Cr | 27.11±11.92 | 29.84±12.05 | 28.97±10.71 | <0.001 | 0.004 | 0.495 | <0.001 |
| Cho | 24.90±10.92 | 23.82±11.66 | 24.47±11.40 | 0.242 | - | - | - |
| NAA | 45.82±20.17 | 43.17±21.28 | 47.03±18.84 | 0.005 | 0.596 | 0.004 | 0.065 |
| Cho/Cr | 0.844±0.246 | 0.882±0.209 | 0.864±0.219 | 0.014 | 0.212 | 0.592 | 0.015 |
| NAA/Cr | 1.676±1.380 | 1.622±0.588 | 1.742±0.564 | 0.119 | - | - | - |
| SUVr | 1.921±0.871 | 0.870±0.149 | 0.902±0.212 | <0.001 | <0.001 | 0.999 | <0.001 |
| Variables | r | P |
|---|---|---|
| Cr | -0.161 | <0.001 |
| Cho | -0.176 | <0.001 |
| NAA | -0.200 | <0.001 |
| Cho/Cr | -0.058 | 0.787 |
| NAA/Cr | -0.009 | 0.069 |
表4 Tau+体素组内各代谢物水平(含代谢物比值)和Tau PET SUVr的相关性分析结果
Tab.4 Correlation analysis of metabolite levels (or ratios) and Tau PET SUVr in Tau+ voxel
| Variables | r | P |
|---|---|---|
| Cr | -0.161 | <0.001 |
| Cho | -0.176 | <0.001 |
| NAA | -0.200 | <0.001 |
| Cho/Cr | -0.058 | 0.787 |
| NAA/Cr | -0.009 | 0.069 |
图4 1例PT组AD患者的1H-MRS代谢物热图及18F-APN-1607 PET/MR融合图像
Fig.4 1H-MRS metabolite heatmap and 18F-APN-1607 PET/MR fusion image of an AD patient. A-E: Heat maps of NAA, Cho, Cr, NAA/Cr, and Cho/Cr, respectively. F:18F-APN-1607 PET/MR fusion image of the AD patient (female, 58 years old, education years: 12; MMSE: 5; MoCa: 2; CDR: 2). NAA, Cho and Cr are lower in the Tau protein deposition area, while NAA/Cr and Cho/Cr showed no significant differences between the Tau protein deposition area and the non-Tau protein deposition area.
| [1] | Gin A, Nguyen PD, Serrano G, et al. Towards early diagnosis and screening of Alzheimer's disease using frequency locked whispering gallery mode microtoroid biosensors[J]. Res Sq, 2024: rs.3.rs-4355995. doi:10.1038/s44328-024-00009-8 |
| [2] | Peretti DE, Boccalini C, Ribaldi F, et al. Association of glial fibrillary acid protein, Alzheimer's disease pathology and cognitive decline[J]. Brain, 2024, 147(12): 4094-104. doi:10.1093/brain/awae211 |
| [3] | CliffordJr Jack, , Andrews JS, Beach TG, et al. Revised criteria for diagnosis and staging of Alzheimer's disease: Alzheimer's Association Workgroup[J]. Alzheimers Dement, 2024, 20(8): 5143-69. doi:10.1002/alz.13859 |
| [4] | Lu JY, Wang J, Wu J, et al. Pilot implementation of the revised criteria for staging of Alzheimer's disease by the Alzheimer's Association Workgroup in a tertiary memory clinic[J]. Alzheimers Dement, 2024, 20(11): 7831-46. doi:10.1002/alz.14245 |
| [5] | Tahami Monfared AA, Byrnes MJ, White LA, et al. Alzheimer's disease: epidemiology and clinical progression[J]. Neurol Ther, 2022, 11(2): 553-69. doi:10.1007/s40120-022-00338-8 |
| [6] | Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer's disease[J]. Lancet, 2021, 397(10284): 1577-90. doi:10.1016/s0140-6736(20)32205-4 |
| [7] | Stelzl LS, Pietrek LM, Holla A, et al. Global structure of the intrinsically disordered protein tau emerges from its local structure[J]. JACS Au, 2022, 2(3): 673-86. doi:10.1021/jacsau.1c00536 |
| [8] | Zhao LH, Teng JL, Mai W, et al. A pilot study on the cutoff value of related brain metabolite in Chinese elderly patients with mild cognitive impairment using MRS[J]. Front Aging Neurosci, 2021, 13: 617611. doi:10.3389/fnagi.2021.617611 |
| [9] | Valatkevičienė K, Levin O, Šarkinaitė M, et al. N-acetyl-aspartate and myo-inositol as markers of white matter microstructural organization in mild cognitive impairment: evidence from a DTI-1H-MRS pilot study[J]. Diagnostics (Basel), 2023, 13(4): 654. doi:10.3390/diagnostics13040654 |
| [10] | Kara F, Joers JM, Deelchand DK, et al. 1H MR spectroscopy biomarkers of neuronal and synaptic function are associated with tau deposition in cognitively unimpaired older adults[J]. Neurobiol Aging, 2022, 112: 16-26. doi:10.1016/j.neurobiolaging.2021.12.010 |
| [11] | Li L, Liu FT, Li M, et al. Clinical utility of 18F-APN-1607 tau PET imaging in patients with progressive supranuclear palsy[J]. Mov Disord, 2021, 36(10): 2314-23. doi:10.1002/mds.28672 |
| [12] | Krix S, Wilczynski E, Falgàs N, et al. Towards early diagnosis of Alzheimer's disease: advances in immune-related blood biomarkers and computational approaches[J]. Front Immunol, 2024, 15: 1343900. doi:10.3389/fimmu.2024.1343900 |
| [13] | Chang Y, Liu JJ, Xu XD, et al. Subcortical tau deposition and plasma glial fibrillary acidic protein as predictors of cognitive decline in mild cognitive impairment and Alzheimer's disease[J]. Eur J Nucl Med Mol Imaging, 2025, 52(4): 1496-509. doi:10.1007/s00259-024-07016-x |
| [14] | 鲁佳荧, 蒋皆恢, 王 敏, 等. 阿尔茨海默病患者脑内tau蛋白分布与认知组分相关性的PET显像研究[J]. 中国临床神经科学, 2020, 28(4): 396-404. |
| [15] | Qiao Z, Wang GH, Zhao XB, et al. Neuropsychological performance is correlated with tau protein deposition and glucose metabolism in patients with Alzheimer's disease[J]. Front Aging Neurosci, 2022, 14: 841942. doi:10.3389/fnagi.2022.841942 |
| [16] | Xu XJ, Ruan WW, Liu F, et al. 18F-APN-1607 tau positron emission tomography imaging for evaluating disease progression in Alzheimer's disease[J]. Front Aging Neurosci, 2022, 13: 789054. doi:10.3389/fnagi.2021.789054 |
| [17] | Matthews DC, Kinney JW, Ritter A, et al. Relationships between plasma biomarkers, tau PET, FDG PET, and volumetric MRI in mild to moderate Alzheimer's disease patients[J]. Alzheimers Dement (N Y), 2024, 10(3): e12490. doi:10.1002/trc2.12490 |
| [18] | Ye JW, Wan HL, Chen SH, et al. Targeting tau in Alzheimer's disease: from mechanisms to clinical therapy[J]. Neural Regen Res, 2024, 19(7): 1489-98. doi:10.4103/1673-5374.385847 |
| [19] | Waheed Z, Choudhary J, Jatala FH, et al. The role of tau proteoforms in health and disease[J]. Mol Neurobiol, 2023, 60(9): 5155-66. doi:10.1007/s12035-023-03387-8 |
| [20] | Zhang SM, Crossley CA, Yuan Q. Neuronal vulnerability of the entorhinal cortex to tau pathology in Alzheimer's disease[J]. Br J Biomed Sci, 2024, 81: 13169. doi:10.3389/bjbs.2024.13169 |
| [21] | Hu JX, Sha WC, Yuan SS, et al. Aggregation, transmission, and toxicity of the microtubule-associated protein tau: a complex comprehension[J]. Int J Mol Sci, 2023, 24(19): 15023. doi:10.3390/ijms241915023 |
| [22] | Wang M, Wei M, Wang LY, et al. Tau protein accumulation trajectory-based brain age prediction in the Alzheimer's disease continuum[J]. Brain Sci, 2024, 14(6): 575. doi:10.3390/brainsci14060575 |
| [23] | Stouffer KM, Chen C, Kulason S, et al. Early amygdala and ERC atrophy linked to 3D reconstruction of rostral neurofibrillary tau tangle pathology in Alzheimer's disease[J]. Neuroimage Clin, 2023, 38: 103374. doi:10.1016/j.nicl.2023.103374 |
| [24] | Ma D, Fetahu IS, Wang M, et al. The fusiform gyrus exhibits an epigenetic signature for Alzheimer's disease[J]. Clin Epigenetics, 2020, 12(1): 129. doi:10.1186/s13148-020-00916-3 |
| [25] | Hu JL, Zhang M, Zhang YY, et al. Neurometabolic topography and associations with cognition in Alzheimer's disease: a whole-brain high-resolution 3D MRSI study[J]. Alzheimers Dement, 2024, 20(9): 6407-22. doi:10.1002/alz.14137 |
| [26] | Zhang M, Hu JL, Zhang YY, et al. Associations between Aβ deposition and neurometabolic alterations in Alzheimer's disease: Insights from hybrid 3D MRSI-PET imaging[J]. Alzheimers Dement, 2025, 21(6): e70332. doi:10.1002/alz.70332 |
| [27] | Sheikh-Bahaei N, Chen M, Pappas I. Magnetic resonance spectroscopy (MRS) in Alzheimer's disease[J]. Methods Mol Biol, 2024, 2785: 115-42. doi:10.1007/978-1-0716-3774-6_9 |
| [28] | Kara F, Kantarci K. Understanding proton magnetic resonance spectroscopy neurochemical changes using Alzheimer's disease biofluid, PET, postmortem pathology biomarkers, and APOE genotype[J]. Int J Mol Sci, 2024, 25(18): 10064. doi:10.3390/ijms251810064 |
| [29] | Muñoz-Castro C, Serrano-Pozo A. Astrocyte-neuron interactions in Alzheimer's disease[J]. Adv Neurobiol, 2024, 39: 345-82. doi:10.1007/978-3-031-64839-7_14 |
| [30] | Singh S, Khan S, Shahid M, et al. Targeting tau in Alzheimer's and beyond: insights into pathology and therapeutic strategies[J]. Ageing Res Rev, 2025, 104: 102639. doi:10.1016/j.arr.2024.102639 |
| [31] | Olešová D, Dobešová D, Majerová P, et al. Changes in lipid metabolism track with the progression of neurofibrillary pathology in tauopathies[J]. J Neuroinflammation, 2024, 21(1): 78. doi:10.1186/s12974-024-03060-4 |
| [32] | Živanović M, Aracki Trenkić A, Milošević V, et al. The role of magnetic resonance imaging in the diagnosis and prognosis of dementia[J]. Biomol Biomed, 2023, 23(2): 209-24. doi:10.17305/bjbms.2022.8085 |
| [33] | Abbaspour F, Mohammadi N, Amiri H, et al. Applications of magnetic resonance spectroscopy in diagnosis of neurodegenerative diseases: a systematic review[J]. Heliyon, 2024, 10(9): e30521. doi:10.1016/j.heliyon.2024.e30521 |
| [34] | Matsuoka K, Hirata K, Kokubo N, et al. Investigating neural dysfunction with abnormal protein deposition in Alzheimer's disease through magnetic resonance spectroscopic imaging, plasma biomarkers, and positron emission tomography[J]. Neuroimage Clin, 2024, 41: 103560. doi:10.1016/j.nicl.2023.103560 |
| [1] | 冉念东, 刘杰, 徐剑, 张永萍, 郭江涛. 黑骨藤正丁醇萃取成分治疗大鼠阿尔茨海默病的药效学及作用机制[J]. 南方医科大学学报, 2025, 45(4): 785-798. |
| [2] | 王妍, 阮毓卿, 崔璨, 王秀. 交泰丸通过激活PI3K/AKT信号通路改善阿尔茨海默病模型小鼠大脑的葡萄糖代谢[J]. 南方医科大学学报, 2024, 44(5): 894-903. |
| [3] | 王思飞, 齐永帅, 江 英, 池晓华, 黄 凯, 阮楚茵, 杨晓镪, 李贵平. Z-Score成像系统辅助脑血流灌注SPECT对早期阿尔茨海默病患者的诊断有较高价值[J]. 南方医科大学学报, 2021, 41(7): 1093-1100. |
| [4] | 薛继国, 刘 静, 耿 淼, 岳敬伟, 贺浩宸, 范 皎. 基于加权基因共表达网络分析阿尔茨海默病相关的核心基因[J]. 南方医科大学学报, 2021, 41(12): 1752-1762. |
| [5] | 方迎艳, 苏振宏, 司文霞, 刘圆呈, 李 洁, 曾 鹏. 白藜芦醇治疗阿尔茨海默病的作用机制:基于网络药理学方法[J]. 南方医科大学学报, 2021, 41(1): 10-19. |
| [6] | 李青峰,邢潇丹,冯前进. 基于耦合的卷积-图卷积神经网络的阿尔茨海默病的磁共振诊断方法[J]. 南方医科大学学报, 2020, 40(04): 531-537. |
| [7] | 张敬,于晴,刘阳,刘辉,孙茫,田芹,涂生芬. 丙泊酚合并低氧通过p38通路损伤未成熟大鼠的认知功能[J]. 南方医科大学学报, 2018, 38(11): 1294-. |
| [8] | 张海英,刘亦恒,付媛,陈鹏程,陆睿,李剑星,陈明会,杨浩池,张雨生. 海马内注射PrPC抗体对APPswe/PSEN1dE9转基因小鼠学习和记忆的影响[J]. 南方医科大学学报, 2018, 38(04): 443-. |
| [9] | 罗静,赵艳,谢婧雯,刘鑫,林芳波,侯德仁. 敲低SORL1表达构建模拟阿尔茨海默病的细胞模型[J]. 南方医科大学学报, 2018, 38(01): 8-. |
| [10] | 李维,田怡,邓炎尧,奉夏露,王艳,冯辉,侯德仁. 阿尔茨海默病患者血清脂联素水平与认知功能的相关性[J]. 南方医科大学学报, 2017, 37(04): 542-. |
| [11] | 柴继侠,李徽徽,王元元,柴强,贺文欣,周艳梅,胡小冬,王震寰. 二烯丙基二硫对AD模型小鼠学习记忆能力和海马突触的影响[J]. 南方医科大学学报, 2016, 36(10): 1417-. |
| [12] | 何颜结,卫佩如,伍巧燕,张馨宇,张兴梅,刘晓加,王方. ApoE4在U87细胞中可增加GSK-3β的表达及Tau的磷酸化[J]. 南方医科大学学报, 2016, 36(07): 904-. |
| [13] | 邓锦凤,邓炎尧,李维,奉夏露,俞珠玲,赵艳,侯德仁. 血管紧张素转化酶基因位点多态性与阿尔茨海默病的相关性[J]. 南方医科大学学报, 2015, 35(09): 1325-. |
| [14] | 邓炎尧,侯德仁,田密,李维,奉夏露. AD模型小鼠海马和小脑Aβ的沉积与相关miRNAs表达的变化[J]. 南方医科大学学报, 2014, 34(03): 323-. |
| [15] | 田密,侯德仁,邓炎尧,李维,奉夏露. STAT3与P-STAT3在转基因AD小鼠脑组织中的表达及意义[J]. 南方医科大学学报, 2013, 33(12): 1778-. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||