南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (1): 170-178.doi: 10.12122/j.issn.1673-4254.2025.01.20
• • 上一篇
卢梓涵1(), 黄方俊1,3, 蔡光瑶2, 刘继红2, 甄鑫1(
)
收稿日期:
2024-09-05
出版日期:
2025-01-20
发布日期:
2025-01-20
通讯作者:
甄鑫
E-mail:luzihan203@126.com;xinzhen@smu.edu.cn
作者简介:
卢梓涵,在读硕士研究生,E-mail: luzihan203@126.com
基金资助:
Zihan LU1(), Fangjun HUANG1,3, Guangyao CAI2, Jihong LIU2, Xin ZHEN1(
)
Received:
2024-09-05
Online:
2025-01-20
Published:
2025-01-20
Contact:
Xin ZHEN
E-mail:luzihan203@126.com;xinzhen@smu.edu.cn
Supported by:
摘要:
目的 探索基于多约束表征学习分类模型在面对缺失实验室指标的情况下鉴别卵巢癌的鉴别能力和应用价值。 方法 收集了2344例患者(393例卵巢癌和1951例对照)的缺失实验室指标表格型数据,使用本研究提出的基于判别学习和互信息以及特征投影重要性得分一致性及缺失位置估算的表征学习分类模型对缺失的卵巢癌实验室指标特征进行投影到潜在空间得到分类模型。对提出的约束项进行消融实验,通过准确率、ROC曲线下面积(AUC)、敏感度、特异性说明约束项的可行性和有效项。采用交叉验证方法和准确率、AUC、敏感度、特异性评价该分类模型的鉴别性能。将本研究与其他用于缺失数据的插补方法进行对缺失数据处理后鉴别分类能力的对比。 结果 消融实验结果显示约束项之间有很好的相容性,每项约束项都有较好的鲁棒性。交叉验证结果显示,本研究提出的基于多约束表征学习分类模型在面对缺失实验室指标的情况下对卵巢癌的鉴别中的AUC、准确率、敏感度、特异性分别为0.915、0.888、0.774、0.910,其中AUC和敏感度优于其它缺失数据插补方法。 结论 基于多约束表征学习模型在缺失实验室指标鉴别卵巢癌的应用中具有优秀的鉴别能力和较高的应用价值。与其他缺失插补方法相比,本研究提出的多约束表征学习模型在针对卵巢癌缺失实验室指标的鉴别分类任务中具有较大的优势。
卢梓涵, 黄方俊, 蔡光瑶, 刘继红, 甄鑫. 针对缺失实验室指标多约束表征学习的卵巢癌鉴别方法[J]. 南方医科大学学报, 2025, 45(1): 170-178.
Zihan LU, Fangjun HUANG, Guangyao CAI, Jihong LIU, Xin ZHEN. A multi-constraint representation learning model for identification of ovarian cancer with missing laboratory indicators[J]. Journal of Southern Medical University, 2025, 45(1): 170-178.
Algorithm 1 Pseudocode of the proposed method |
---|
Training stage Input: data feature matrix Output: projection Matrix for Data Representation Learning |
Begin Initialize For t to number of iterations For Calculate Calculate Updated End End End |
Testing stage Input: New test dataset for missing data Output: The projection of the new dataset onto the potential space obtain |
表1 应用于缺失数据的表征学习模型的算法伪代码
Tab.1 Algorithmic pseudo-code for a representation learning model applied to the missing data
Algorithm 1 Pseudocode of the proposed method |
---|
Training stage Input: data feature matrix Output: projection Matrix for Data Representation Learning |
Begin Initialize For t to number of iterations For Calculate Calculate Updated End End End |
Testing stage Input: New test dataset for missing data Output: The projection of the new dataset onto the potential space obtain |
Model | AUC | Accuracy | Sensitivity | Specificity |
---|---|---|---|---|
BF | 0.862 | 0.856 | 0.627 | 0.903 |
BF+CRF | 0.893 | 0.864 | 0.641 | 0.911 |
BF+DA | 0.897 | 0.880 | 0.761 | 0.905 |
BF+MPE | 0.877 | 0.862 | 0.644 | 0.905 |
BF+MIF | 0.871 | 0.870 | 0.655 | 0.915 |
PROPOSED | 0.919 | 0.899 | 0.729 | 0.940 |
表2 表征学习模型在卵巢癌实验室指标数据上进行的消融实验
Tab.2 Results of ablation experiments of the representation learning model on ovarian cancer laboratory index data
Model | AUC | Accuracy | Sensitivity | Specificity |
---|---|---|---|---|
BF | 0.862 | 0.856 | 0.627 | 0.903 |
BF+CRF | 0.893 | 0.864 | 0.641 | 0.911 |
BF+DA | 0.897 | 0.880 | 0.761 | 0.905 |
BF+MPE | 0.877 | 0.862 | 0.644 | 0.905 |
BF+MIF | 0.871 | 0.870 | 0.655 | 0.915 |
PROPOSED | 0.919 | 0.899 | 0.729 | 0.940 |
Methods | AUC/Accuracy | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
GAIN | MICE | KNN | MEAN | SINKHORN | ROUND-ROBIN | SOFT | MISSFOREST | REMASKER | PROPOSED | |
Covid_1 | 0.884/0.811 | 0.863/0.805 | 0.877/0.820 | 0.856/0.794 | 0.877/0.823 | 0.882/0.829 | 0.889/0.826 | 0.890/0.829 | 0.885/0.829 | 0.903/0.832 |
Thyroid_1 | 0.970/0.933 | 0.977/0.942 | 0.978/0.953 | 0.969/0.948 | 0.978/0.948 | 0.968/0.935 | 0.970/0.932 | 0.979/0.958 | 0.975/0.950 | 0.981/0.953 |
Cirrhosis_1 | 0.861/0.761 | 0.831/0.773 | 0.848/0.785 | 0.808/0.678 | 0.823/0.761 | 0.870/0.773 | 0.870/0.738 | 0.848/0.738 | 0.813/0.761 | 0.872/0.785 |
Covid_2 | 0.827/0.589 | 0.816/0.732 | 0.787/0.660 | 0.760/0.696 | 0.819/0.732 | 0.830/0.714 | 0.805/0.642 | 0.831/0.714 | 0.750/0.625 | 0.885/0.732 |
Thyroid_2 | 0.959/0.982 | 0.957/0.983 | 0.929/0.978 | 0.931/0.976 | 0.964/0.971 | 0.956/0.983 | 0.942/0.964 | 0.964/0.975 | 0.938/0.973 | 0.971/0.962 |
HCC | 0.882/0.757 | 0.838/0.757 | 0.829/0.727 | 0.779/0.727 | 0.888/0.787 | 0.833/0.818 | 0.840/0.787 | 0.865/0.757 | 0.796/0.696 | 0.917/0.848 |
Hepatitis | 0.928/0.838 | 0.910/0.838 | 0.807/0.838 | 0.779/0.838 | 0.840/0.870 | 0.823/0.870 | 0.773/0.741 | 0.833/0.80 | 0.757/0.838 | 0.964/0.903 |
DRD | 0.800/0.718 | 0.800/0.731 | 0.800/0.709 | 0.758/0.683 | 0.787/0.701 | 0.800/0.709 | 0.798/0.718 | 0.795/0.709 | 0.797/0.718 | 0.824/0.731 |
MI | 0.763/0.761 | 0.766/0.747 | 0.764/0.723 | 0.732/0.708 | 0.766/0.700 | 0.768/0.702 | 0.712/0.676 | 0.751/0.732 | 0.749/0.726 | 0.770/0.694 |
Cirrhosis_2 | 0.840/0.761 | 0.822/0.738 | 0.889/0.761 | 0.814/0.678 | 0.872/0.773 | 0.878/0.797 | 0.838/0.773 | 0.849/0.773 | 0.813/0.761 | 0.896/0.809 |
PBC | 0.851/0.773 | 0.935/0.797 | 0.890/0.738 | 0.826/0.761 | 0.888/0.773 | 0.879/0.761 | 0.816/0.738 | 0.849/0.797 | 0.844/0.797 | 0.902/0.833 |
Support | 0.886/0.805 | 0.887/0.795 | 0.815/0.750 | 0.810/0.725 | 0.859/0.838 | 0.833/0.820 | 0.865/0.836 | 0.870/0.839 | 0.863/0.845 | 0.919/0.845 |
Thyroid_3 | 0.916/0.917 | 0.915/0.944 | 0.917/0.942 | 0.883/0.919 | 0.916/0.933 | 0.909/0.941 | 0.901/0.935 | 0.919/0.926 | 0.928/0.923 | 0.945/0.892 |
Kidney | 0.994/0.937 | 0.997/0.950 | 0.993/0.950 | 0.995/0.962 | 0.991/0.959 | 0.996/0.952 | 0.998/0.962 | 0.995/0.962 | 0.994/0.937 | 0.999/0.962 |
Thyroid_4 | 0.974/0.978 | 0.992/0.971 | 0.990/0.978 | 0.976/0.978 | 0.992/0.973 | 0.987/0.980 | 0.989/0.976 | 0.990/0.971 | 0.991/0.976 | 0.995/0.991 |
表3 本模型与其它插补方法在15种不同缺失数据集上的分类鉴别能力对比
Tab.3 Comparison of the classification discrimination ability of our model and other interpolation methods on 15 different missing datasets
Methods | AUC/Accuracy | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
GAIN | MICE | KNN | MEAN | SINKHORN | ROUND-ROBIN | SOFT | MISSFOREST | REMASKER | PROPOSED | |
Covid_1 | 0.884/0.811 | 0.863/0.805 | 0.877/0.820 | 0.856/0.794 | 0.877/0.823 | 0.882/0.829 | 0.889/0.826 | 0.890/0.829 | 0.885/0.829 | 0.903/0.832 |
Thyroid_1 | 0.970/0.933 | 0.977/0.942 | 0.978/0.953 | 0.969/0.948 | 0.978/0.948 | 0.968/0.935 | 0.970/0.932 | 0.979/0.958 | 0.975/0.950 | 0.981/0.953 |
Cirrhosis_1 | 0.861/0.761 | 0.831/0.773 | 0.848/0.785 | 0.808/0.678 | 0.823/0.761 | 0.870/0.773 | 0.870/0.738 | 0.848/0.738 | 0.813/0.761 | 0.872/0.785 |
Covid_2 | 0.827/0.589 | 0.816/0.732 | 0.787/0.660 | 0.760/0.696 | 0.819/0.732 | 0.830/0.714 | 0.805/0.642 | 0.831/0.714 | 0.750/0.625 | 0.885/0.732 |
Thyroid_2 | 0.959/0.982 | 0.957/0.983 | 0.929/0.978 | 0.931/0.976 | 0.964/0.971 | 0.956/0.983 | 0.942/0.964 | 0.964/0.975 | 0.938/0.973 | 0.971/0.962 |
HCC | 0.882/0.757 | 0.838/0.757 | 0.829/0.727 | 0.779/0.727 | 0.888/0.787 | 0.833/0.818 | 0.840/0.787 | 0.865/0.757 | 0.796/0.696 | 0.917/0.848 |
Hepatitis | 0.928/0.838 | 0.910/0.838 | 0.807/0.838 | 0.779/0.838 | 0.840/0.870 | 0.823/0.870 | 0.773/0.741 | 0.833/0.80 | 0.757/0.838 | 0.964/0.903 |
DRD | 0.800/0.718 | 0.800/0.731 | 0.800/0.709 | 0.758/0.683 | 0.787/0.701 | 0.800/0.709 | 0.798/0.718 | 0.795/0.709 | 0.797/0.718 | 0.824/0.731 |
MI | 0.763/0.761 | 0.766/0.747 | 0.764/0.723 | 0.732/0.708 | 0.766/0.700 | 0.768/0.702 | 0.712/0.676 | 0.751/0.732 | 0.749/0.726 | 0.770/0.694 |
Cirrhosis_2 | 0.840/0.761 | 0.822/0.738 | 0.889/0.761 | 0.814/0.678 | 0.872/0.773 | 0.878/0.797 | 0.838/0.773 | 0.849/0.773 | 0.813/0.761 | 0.896/0.809 |
PBC | 0.851/0.773 | 0.935/0.797 | 0.890/0.738 | 0.826/0.761 | 0.888/0.773 | 0.879/0.761 | 0.816/0.738 | 0.849/0.797 | 0.844/0.797 | 0.902/0.833 |
Support | 0.886/0.805 | 0.887/0.795 | 0.815/0.750 | 0.810/0.725 | 0.859/0.838 | 0.833/0.820 | 0.865/0.836 | 0.870/0.839 | 0.863/0.845 | 0.919/0.845 |
Thyroid_3 | 0.916/0.917 | 0.915/0.944 | 0.917/0.942 | 0.883/0.919 | 0.916/0.933 | 0.909/0.941 | 0.901/0.935 | 0.919/0.926 | 0.928/0.923 | 0.945/0.892 |
Kidney | 0.994/0.937 | 0.997/0.950 | 0.993/0.950 | 0.995/0.962 | 0.991/0.959 | 0.996/0.952 | 0.998/0.962 | 0.995/0.962 | 0.994/0.937 | 0.999/0.962 |
Thyroid_4 | 0.974/0.978 | 0.992/0.971 | 0.990/0.978 | 0.976/0.978 | 0.992/0.973 | 0.987/0.980 | 0.989/0.976 | 0.990/0.971 | 0.991/0.976 | 0.995/0.991 |
Strategy | AUC | Accuracy | Sensitivity | Specificity |
---|---|---|---|---|
MEAN | 0.891 | 0.901 | 0.620 | 0.956 |
KNN | 0.880 | 0.892 | 0.611 | 0.946 |
MICE | 0.888 | 0.892 | 0.505 | 0.965 |
MISSFOREST | 0.901 | 0.896 | 0.559 | 0.961 |
AE | 0.871 | 0.904 | 0.598 | 0.964 |
REMASKER | 0.883 | 0.891 | 0.588 | 0.949 |
SINKHORN | 0.893 | 0.906 | 0.520 | 0.978 |
ROUND-ROBIN | 0.896 | 0.906 | 0.548 | 0.973 |
GAIN | 0.900 | 0.898 | 0.568 | 0.961 |
SOFT | 0.898 | 0.909 | 0.622 | 0.963 |
PROPOSED | 0.919 | 0.899 | 0.729 | 0.940 |
表4 多约束的表征学习模型与其它数据插补方法在面对卵巢癌缺失实验室指标时的鉴别分类性能比较
Tab.4 Comparison of the discriminative classification perfo-rmance of the proposed multi-constrained representation learning model and other data interpolation methods on ovarian cancer data with missing laboratory indicators
Strategy | AUC | Accuracy | Sensitivity | Specificity |
---|---|---|---|---|
MEAN | 0.891 | 0.901 | 0.620 | 0.956 |
KNN | 0.880 | 0.892 | 0.611 | 0.946 |
MICE | 0.888 | 0.892 | 0.505 | 0.965 |
MISSFOREST | 0.901 | 0.896 | 0.559 | 0.961 |
AE | 0.871 | 0.904 | 0.598 | 0.964 |
REMASKER | 0.883 | 0.891 | 0.588 | 0.949 |
SINKHORN | 0.893 | 0.906 | 0.520 | 0.978 |
ROUND-ROBIN | 0.896 | 0.906 | 0.548 | 0.973 |
GAIN | 0.900 | 0.898 | 0.568 | 0.961 |
SOFT | 0.898 | 0.909 | 0.622 | 0.963 |
PROPOSED | 0.919 | 0.899 | 0.729 | 0.940 |
1 | Zheng RS, Zhang SW, Zeng HM, et al. Cancer incidence and mortality in China, 2016[J]. J Natl Cancer Cent, 2022, 2(1): 1-9. |
2 | National Cancer Institute. Cancer stat facts: ovarian cancer 2024[EB/OL]. [2020-08-10]. . |
3 | Zeng HM, Zheng RS, Guo YM, et al. Cancer survival in China, 2003-2005: a population-based study[J]. Int J Cancer, 2015, 136(8): 1921-30. |
4 | Sundar S, Neal RD, Kehoe S. Diagnosis of ovarian cancer[J]. BMJ, 2015, 351: h4443. |
5 | Dochez V, Caillon H, Vaucel E, et al. Biomarkers and algorithms for diagnosis of ovarian cancer: CA125, HE4, RMI and ROMA, a review[J]. J Ovarian Res, 2019, 12(1): 28. |
6 | Li JP, Dowdy S, Tipton T, et al. HE4 as a biomarker for ovarian and endometrial cancer management[J]. Expert Rev Mol Diagn, 2009, 9(6): 555-66. |
7 | Guo YY, Jiang TJ, Ouyang LL, et al. A novel diagnostic nomogram based on serological and ultrasound findings for preoperative prediction of malignancy in patients with ovarian masses[J]. Gynecol Oncol, 2021, 160(3): 704-12. |
8 | Nijman S, Leeuwenberg AM, Beekers I, et al. Missing data is poorly handled and reported in prediction model studies using machine learning: a literature review[J]. J Clin Epidemiol, 2022, 142: 218-29. |
9 | Papageorgiou G, Grant SW, Takkenberg JJM, et al. Statistical primer: how to deal with missing data in scientific research?[J]. Interact Cardiovasc Thorac Surg, 2018, 27(2): 153-8. |
10 | Hastie T, Mazumder R, Lee JD, et al. Matrix completion and low-rank SVD via fast alternating least squares[J]. J Mach Learn Res, 2015, 16: 3367-402. |
11 | van Buuren S, Groothuis-Oudshoorn K. Mice: multivariate im-putation by chained equations in R[J]. J Stat Soft, 2011, 45(3): 1-67. |
12 | Qu L, Li L, Zhang Y, et al. PPCA-based missing data imputation for traffic flow volume: a systematical approach[J]. IEEE Trans Intell Transp Syst, 2009, 10(3): 512-22. |
13 | Crookston NL, Finley AO. yaImpute: An Rpackage for KNN imputation[J]. J Stat Soft, 2008, 23(10): 1-16. |
14 | Stekhoven DJ, Bühlmann P. MissForest: non-parametric missing value imputation for mixed-type data[J]. Bioinformatics, 2012, 28(1): 112-8. |
15 | Zhang XM, Yan C, Gao C, et al. Predicting missing values in medical data via XGBoost regression[J]. J Healthc Inform Res, 2020, 4(4): 383-94. |
16 | Yoon J, Jordon J, Schaar M. GAIN: missing data imputation using generative adversarial nets[EB/OL]. [2018-06-07]. |
17 | Du TY, Melis L, Wang T. ReMasker: imputing tabular data with masked autoencoding[EB/OL]. [2023-09-25]. |
18 | Muzellec B, Josse J, Boyer C, et al. Missing data imputation using optimal transport[EB/OL]. [2020-07-01]. . |
19 | Ning ZY, Lin ZH, Xiao Q, et al. Multi-constraint latent representation learning for prognosis analysis using multi-modal data[J]. IEEE Trans Neural Netw Learn Syst, 2023, 34(7): 3737-50. |
20 | Ning ZY, Du DH, Tu C, et al. Relation-aware shared representation learning for cancer prognosis analysis with auxiliary clinical variables and incomplete multi-modality data[J]. IEEE Trans Med Imaging, 2022, 41(1): 186-98. |
21 | Ning ZY, Xiao Q, Feng QJ, et al. Relation-induced multi-modal shared representation learning for Alzheimer’s disease diagnosis[J]. IEEE Trans Med Imaging, 2021, 40(6): 1632-45. |
22 | Liu Y, Hong XP, Tao XY, et al. Model behavior preserving for class-incremental learning[J]. IEEE Trans Neural Netw Learn Syst, 2023, 34(10): 7529-40. |
23 | Yoon JS, Zhang Y, Jordan J, et al. VIME: extending the success of self- and semi-supervised learning to tabular domain[C]//Advances in Neural Information Processing Systems 33, 2020. |
24 | Gülmezoglu MB, Edizkan R, Ergin S, et al. Use of center of gravity with the common vector approach in isolated word recognition[J]. Expert Syst Appl, 2018, 38(4): 3690-6. |
25 | Lerman PM. Fitting segmented regression models by grid search[J]. Appl Stat, 1980, 29(1): 77. |
26 | Antal B, Hajdu A. An ensemble-based system for automatic screening of diabetic retinopathy[J]. Knowl Based Syst, 2014, 60: 20-7. |
27 | Cabitza F, Campagner A, Ferrari D, et al. Development, evaluation, and validation of machine learning models for COVID-19 detection based on routine blood tests[J]. Clin Chem Lab Med, 2020, 59(2): 421-31. |
28 | Dickson ER, Grambsch PM, Fleming TR, et al. Prognosis in primary biliary cirrhosis: model for decision making[J]. Hepatology, 1989, 10(1): 1-7. |
29 | Golovenkin SE, Bac J, Chervov A, et al. Trajectories, bifurcations, and pseudo-time in large clinical datasets: applications to myocardial infarction and diabetes data[J]. Gigascience, 2020, 9(11): giaa128. |
30 | García-Laencina PJ, Sancho-Gómez JL, Figueiras-Vidal AR. Pattern classification with missing data: a review[J]. Neural Comput Appl, 2010, 19(2): 263-82. |
31 | Awan SE, Bennamoun M, Sohel F, et al. A reinforcement learning-based approach for imputing missing data[J]. Neural Comput Appl, 2022, 34(12): 9701-16. |
32 | Lin WC, Tsai CF. Missing value imputation: a review and analysis of the literature (2006-2017)[J]. Artif Intell Rev, 2020, 53(2): 1487-509. |
33 | Ramos-Pérez I, Barbero-Aparicio JA, Canepa-Oneto A, et al. An extensive performance comparison between feature reduction and feature selection preprocessing algorithms on imbalanced wide data[J]. Information, 2024, 15(4): 223. |
34 | Nasir IM, Khan MA, Yasmin M, et al. Pearson correlation-based feature selection for document classification using balanced training[J]. Sensors, 2020, 20(23): 6793. |
35 | Berisha V, Krantsevich C, Hahn PR, et al. Digital medicine and the curse of dimensionality[J]. NPJ Digit Med, 2021, 4(1): 153. |
36 | Pingi ST, Zhang DY, Bashar MA, et al. Joint representation learning with generative adversarial imputation network for improved classification of longitudinal data[J]. Data Sci Eng, 2024, 9(1): 5-25. |
37 | Du WJ, Côté D, Liu Y. SAITS: self-attention-based imputation for time series[J]. Expert Syst Appl, 2023, 219: 119619. |
38 | Zhang P, Gao WF, Hu JC, et al. Multi-label feature selection based on high-order label correlation assumption[J]. Entropy, 2020, 22(7): 797. |
39 | Fan QC, Liu SC, Zhao CJ, et al. An instance- and label-based feature selection method in classification tasks[J]. Information, 2023, 14(10): 532. |
40 | He Q, Li X, Nathan Kim DW, et al. Feasibility study of a multi-criteria decision-making based hierarchical model for multi-modality feature and multi-classifier fusion: applications in medical prognosis prediction[J]. Inf Fusion, 2020, 55: 207-19. |
41 | Tayarani-Najaran MH. A novel ensemble machine learning and an evolutionary algorithm in modeling the COVID-19 epidemic and optimizing government policies[J]. IEEE Trans Syst Man Cybern Syst, 2022, 52(10): 6362-72. |
[1] | 张振阳, 谢金城, 钟伟雄, 梁芳蓉, 杨蕊梦, 甄 鑫. 基于距匹配及判别表征学习的多模态特征融合分类模型研究:高级别胶质瘤与单发性脑转移瘤的鉴别诊断[J]. 南方医科大学学报, 2024, 44(1): 138-145. |
[2] | 郭晓娟, 陈丽平, 吕 芹, 杜瑞娟, 罗 琴, 张 阳, 卞 华, 韩 立. 桂枝茯苓胶囊通过调控NF-κB通路抑制卵巢癌细胞的迁移和诱导卵巢癌细胞的凋亡[J]. 南方医科大学学报, 2023, 43(8): 1315-1321. |
[3] | 张攀扬, 何明敏, 曾园媛, 蔡雄伟. 高级别浆液性卵巢癌复发相关的潜在功能性关键 miRNA-mRNA:基于生物信息学方法[J]. 南方医科大学学报, 2023, 43(1): 8-16. |
[4] | 黄 珍, 沈浩明, 邓红玉, 孙丽莎, 屈 斌. MiR-125b-5p 抑制卵巢癌细胞的迁移和侵袭:基于靶向下调CD147的表达[J]. 南方医科大学学报, 2022, 42(9): 1389-1396. |
[5] | 霍叶琳, 王 月, 安 娜, 杜 雪. TIM-3 基因在上皮性卵巢癌中高表达并促进癌细胞的增殖和迁移[J]. 南方医科大学学报, 2022, 42(2): 190-200. |
[6] | 杨洁容, 陈小平. 类黑色素纳米颗粒联合近红外光照射具有良好的抗卵巢癌作用[J]. 南方医科大学学报, 2022, 42(11): 1681-1688. |
[7] | 赵爱月, 苏云霞, 傅德强. MiR-4772通过调控卵巢癌免疫相关基因改变肿瘤免疫微环境[J]. 南方医科大学学报, 2022, 42(11): 1638-1645. |
[8] | 黎权辉, 岑柏宏, 黄 文, 陈佳扬, 陈章浦, 庞建新, 付卫明, 贺 帅, 季爱民. 靶向卵巢癌细胞的miR-16/多肽纳米递释系统的制备及其功能验证[J]. 南方医科大学学报, 2021, 41(5): 736-746. |
[9] | 刘 娟, 刘星辰, 魏宝宝, 刘 洁, 王悦华, 刘 辉. 稳定过表达XAF1基因对A2780卵巢癌细胞生物学功能的影响[J]. 南方医科大学学报, 2021, 41(5): 760-766. |
[10] | 王 卉, 陈学平, 陈 运, 曹颖诗, 陈 瑶, 刘国炳, 黄莉萍. ENTPD5在上皮性卵巢癌组织中高表达:基于Oncomine数据库及生物信息学方法[J]. 南方医科大学学报, 2021, 41(4): 555-561. |
[11] | 王莉洁, 韩 曦, 郑 霞, 周园园, 侯惠莲, 陈 葳, 李 旭, 赵 乐. 人参皂苷20(S)-Rg3通过抑制DNMT3A介导的启动子甲基化促进卵巢癌细胞中抑癌基因VHL的表达[J]. 南方医科大学学报, 2021, 41(1): 100-106. |
[12] | 王丽华, 张 璇, 王亮亮, 王蓓蓓, 张 競, 李玉芝. IL-17A/IL-17RA通过上调自噬降低卵巢癌SKOV3细胞对顺铂敏感性[J]. 南方医科大学学报, 2020, 40(11): 1550-1556. |
[13] | 陈 萱,黄静莹,吕育纯. STAT2在卵巢癌中表达升高并与卵巢癌患者生存不良有关[J]. 南方医科大学学报, 2020, 40(01): 34-41. |
[14] | 梁军,邢慧敏,吴小华,张蕾,赵郡. 人卵巢癌SKOV3 细胞筛选获得的肿瘤干细胞样细胞在血管生成拟态形成中的作用[J]. 南方医科大学学报, 2019, 39(09): 1065-. |
[15] | 俞岚,焦云杰,周蕾,宋文庆,武世伍,王丹娜. 上皮性卵巢癌中八聚体结合转录因子4、Notch1及DLL4的表达及其临床意义[J]. 南方医科大学学报, 2017, 37(04): 444-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||