南方医科大学学报 ›› 2024, Vol. 44 ›› Issue (7): 1284-1296.doi: 10.12122/j.issn.1673-4254.2024.07.08
• • 上一篇
骆金光1,2(), 陶怀祥1,2, 闻志远1, 陈龙1,2, 胡昊1,2, 关翰1(
)
收稿日期:
2024-02-18
出版日期:
2024-07-20
发布日期:
2024-07-25
通讯作者:
关翰
E-mail:2895664010@qq.com;gh668689@126.com
作者简介:
骆金光,在读硕士研究生,E-mail: 2895664010@qq.com
基金资助:
Jinguang LUO1,2(), Huaixiang TAO1,2, Zhiyuan WEN1, Long CHEN1,2, Hao HU1,2, Han GUAN1(
)
Received:
2024-02-18
Online:
2024-07-20
Published:
2024-07-25
Contact:
Han GUAN
E-mail:2895664010@qq.com;gh668689@126.com
摘要:
目的 探讨受肿瘤相关成纤维细胞(CAFs)调控的hsa-miR-18b-5p在前列腺癌(PCa)中的表达水平及作用,并研究对其在PCa发生发展过程中的分子机制。 方法 利用生物信息学技术分析在PCa中高表达的miRNA,构建肿瘤相关成纤维细胞并与PCa细胞系共培养,验证CAFs对PCa细胞增殖和迁移的影响及对hsa-miR-18b-5p的调控作用;RT-qPCR验证20例患者癌组织及癌旁正常组织、前列腺正常上皮增生细胞及PCa各细胞系中hsa-miR-18b-5p的表达水平;通过脂质体法将阴性对照及hsa-miR-18b-5p抑制物分别转染入PCa细胞C4-2、LNCAP中,分为NC inhibitor组和hsa-miR-18b-5p inhibitor组;采用细胞集落形成、CCK-8实验、划痕愈合、Transwell、IC50实验、流式细胞术分别检测C4-2、LNCAP细胞增殖、迁移、侵袭、耐药能力、凋亡和周期;建立PCa裸鼠移植瘤模型,定期测量移植瘤的质量和体积,Kaplan-Meier生存曲线分析裸鼠生存情况;利用靶基因预测分析网站(Targetscan、Mirtarbase、miRDB、miRDIP)预测has-miR-18b-5p的靶基因,并通过双荧光素酶报告基因分析验证hsa-miR-18b-5p与靶基因的靶向关系,RT-qPCR、Western blotting检测各组细胞靶基因的表达水平。 结果 生物信息学分析结果显示,在PCa中高表达的miRNA有17个,结合差异表达程度以及相关文献筛选出拟研究的基因:miR-148a、miR-17、miR-18b-5p、miR-770、miR-297-3p。CAFs与PCa细胞系共培养后hsa-miR-18b-5p的表达水平升高(P<0.01),且促进PCa细胞的增殖与迁移(P<0.01),敲除has-miR-18b-5p可抵消CAFs对PCa细胞增殖及迁移的影响,确定has-miR-18b-5p为研究基因。与正常前列腺上皮细胞或肿瘤旁组织相比,PCa细胞或肿瘤组织中hsa-miR-18b-5p的表达升高(P<0.05);敲除hsa-miR-18b-5p可抑制C4-2、LNCAP细胞的增殖、迁移、侵袭以及耐药(P<0.05);敲除hsa-miR-18b-5p可抑制裸鼠移植瘤质量和体积的增长,增加裸鼠的生存时间(P<0.05)。靶基因预测分析网站显示,FBXL3是hsa-miR-18b-5p的一个潜在作用靶点,双荧光素酶报告基因证实has-miR-18b-5p与FBXL3基因间存在结合位点,且敲除hsa-miR-18b-5p可增加C4-2、LNCAP细胞中FBXL3的蛋白表达(P<0.05)。 结论 CAFs上调前列腺癌细胞hsa-miR-18b-5p的表达水平,后者可能通过靶向调控FBXL3基因的表达促进PCa细胞的增殖和转移。
骆金光, 陶怀祥, 闻志远, 陈龙, 胡昊, 关翰. 肿瘤相关成纤维细胞上调hsa-miR-18b-5p靶向FBXL3促进前列腺癌的增殖及转移[J]. 南方医科大学学报, 2024, 44(7): 1284-1296.
Jinguang LUO, Huaixiang TAO, Zhiyuan WEN, Long CHEN, Hao HU, Han GUAN. Tumor-associated fibroblasts promotes proliferation and migration of prostate cancer cells by suppressing FBXL3 via upregulating hsa-miR-18b-5p[J]. Journal of Southern Medical University, 2024, 44(7): 1284-1296.
Gene | Primer sequence 5'-3' |
---|---|
hsa-miR-18b-5p | F: AGGCGCATTAAGGTGCATCTAGT |
R: ATCCAGTGCAGGGTCCGAGG | |
has-miR-148a | F: TCTGAGACACTCCGACTCTG |
R: AGTTCTGTAGTGCACTGACTTCT | |
has-miR-17 | F: AAGTGCTTACAGTGCAGGTAGT |
R: GTCACCATAATGCTACAAGTGC | |
has-miR-770 | F: CCTCCAGTACCACGTGTCAG |
R: CCCCAGCACCACATCAGG | |
has-miR-297-3p | F: AGTGCTTACAGTGCAGGTAGT |
R: TCACCATAATGCTACAAGTGCC | |
U6 | F: GCTTCGGCAGCACATATACTAAAAT |
R: CGCTTCACGAATTTGCGTGTCAT | |
FBXL3 | F: ATGCTTCACAAGTTTGCCGC |
R: CACGGCCAAGCACATCTTTG | |
GAPDH | F: TCATGACCACAGTCCATGCC |
R: TTCTAGACGGCAGGTCAGGT |
表1 RT-qPCR 引物序列
Tab.1 Primer sequences for RT-qPCR
Gene | Primer sequence 5'-3' |
---|---|
hsa-miR-18b-5p | F: AGGCGCATTAAGGTGCATCTAGT |
R: ATCCAGTGCAGGGTCCGAGG | |
has-miR-148a | F: TCTGAGACACTCCGACTCTG |
R: AGTTCTGTAGTGCACTGACTTCT | |
has-miR-17 | F: AAGTGCTTACAGTGCAGGTAGT |
R: GTCACCATAATGCTACAAGTGC | |
has-miR-770 | F: CCTCCAGTACCACGTGTCAG |
R: CCCCAGCACCACATCAGG | |
has-miR-297-3p | F: AGTGCTTACAGTGCAGGTAGT |
R: TCACCATAATGCTACAAGTGCC | |
U6 | F: GCTTCGGCAGCACATATACTAAAAT |
R: CGCTTCACGAATTTGCGTGTCAT | |
FBXL3 | F: ATGCTTCACAAGTTTGCCGC |
R: CACGGCCAAGCACATCTTTG | |
GAPDH | F: TCATGACCACAGTCCATGCC |
R: TTCTAGACGGCAGGTCAGGT |
图1 PCa中差异表达的miRNA热图和火山图
Fig.1 Volcano plot and heat map of the differential miRNAs in prostate cancer. A: Differential miRNA heat map in prostate cancer. B: Volcano plot of differential miRNA in prostate cancer.
图2 CAFs与NFs的鉴定以及分别和PCa C4-2细胞共培养
Fig.2 Identification of CAFs and NFs and co-cultured prostate cancer C4-2 cells. A: Morphology of CAFs and NFs were observed under light microscope. B, C: Expression of vimentin and α-SMA in CAFs and NFs detected by Western blotting. D: RT-qPCR for detecting vimentin and α-SMA mRNAs in co-cultures of C4-2 cells with CAFs or NFs. *P<0.05, **P<0.01.
图3 CAFs对PCa细胞增殖及迁移的影响
Fig.3 Effect of CAFs on proliferation and migration of PCa cells. A, B: Colony formation assays of C4-2 cells co-cultured with CAFs. C, D: Transwell migration assay of C4-2 cells co-cultured with CAFs. **P<0.01.
图4 敲除has-miR-18b-5p可抵消CAFs对PCa细胞增殖及迁移的影响
Fig.4 Knocking down has-miR-18b-5p attenuates the effect of CAFs on proliferation and migration of PCa cells. A, B: Colony formation assays of CAFs co-cultured with C4-2 cells transfected with NC inhibitor and hsa-miR-18b-5p inhibitor. C, D: Transwell migration assays of CAFs co-cultured with C4-2 cells transfected with NC inhibitor and hsa-miR-18b-5p inhibitor. **P<0.01.
图5 hsa-miR-18b-5p在PCa各细胞系以及临床肿瘤组织中的表达水平
Fig.5 Expression of hsa-miR-18b-5p in prostate cancer cell lines and clinical tumor tissues. A: Expression of hsa-miR-18b-5p in clinical tumor tissues. B: Expression of hsa-miR-18b-5p in prostate cancer cell lines. *P<0.05, **P<0.01 vs BPH-1 group.
图6 hsa-miR-18b-5p对PCa细胞增殖的影响
Fig.6 Effect of Has-miR-18b-5p on proliferation of prostate cancer cells. A: CCK-8 assay of C4-2 and LNCAP cells transfected with NC inhibitor and hsa-miR-18b-5p inhibitor. B, C: Colony formation assay of C4-2 and LNCAP cells transfected with NC inhibitor and hsa-miR-18b-5p inhibitor. *P<0.05, **P<0.01.
图7 hsa-miR-18b-5p对PCa细胞迁移、侵袭的影响
Fig.7 Effect of hsa-miR-18b-5p on migration and invasion of prostate cancer cells. A,B: Wound-healing assay of C4-2 and LNCAP cells transfected with NC inhibitor and hsa-miR-18b-5p inhibitor. C, E: Transwell migration assay of C4-2 and LNCAP cells transfected with NC inhibitor and hsa-miR-18b-5p inhibitor. D, F: Transwell invasion assay of in C4-2 and LNCAP cells transfected with NC inhibitor and hsa-miR-18b-5p inhibitor. *P<0.05, **P<0.01.
图9 hsa-miR-18b-5p对PCa细胞凋亡和周期的影响
Fig.9 Effect of hsa-miR-18b-5p on apoptosis and cell cycle of prostate cancer cells. A,B: Apoptosis assays of C4-2 and LNCAP cells transfected with NC inhibitor and hsa-miR-18b-5p inhibitor. C-F: Cell cycle assays of C4-2 and LNCAP cells transfected with NC inhibitor and hsa-miR-18b-5p inhibitor. *P<0.05, **P<0.01.
图10 hsa-miR-18b-5p对裸鼠体内瘤负荷的影响
Fig.10 Effect of hsa-miR-18b-5p on tumor load in nude mice. A,B: Tumor weight in mice. C: Tumor volume in mice. D: Kaplan-Meier survival curve analysis of survival of the mice. *P<0.05, **P<0.01.
图11 hsa-miR-18b-5p与FBXL3在PCa中的靶向关系
Fig.11 Targeting relationship between hsa-miR-18b-5p and FBXL3 in prostate cancer. A: Wayne diagram of hsa-miR-18b-5p target gene. B: Binding sites of hsa-miR-18b-5p and FBXL3. C: Results of dual luciferase reporter assay. D: RT-qPCR of FBXL3 in C4-2 and LNCAP cells transfected with NC inhibitor and hsa-miR-18b-5p inhibitor. E,F: Western blotting of FBXL3 in C4-2 and LNCAP cells transfected with NC inhibitor and hsa-miR-18b-5p inhibitor. *P<0.05, **P<0.01.
图12 过表达FBXL3可逆转hsa-miR-18b-5p在前列腺癌细胞系中的作用
Fig.12 Overexpression of FBXL3 reverses the effects of hsa-miR-18b-5p knockdown in prostate cancer cell line. A: CCK8 assay of the two co-transfected PCa cell lines. B: Transwell assay of the two co-transfected PCa cell lines. C: Wound healing assay of the two co-transfected PCa cell lines. *P<0.05.
1 | Sehn JK. Prostate cancer pathology: recent updates and controversies[J]. Mo Med, 2018, 115(2): 151-5. |
2 | Kimura T, Egawa S. Epidemiology of prostate cancer in Asian countries[J]. Int J Urol, 2018, 25(6): 524-31. |
3 | Zelic R, Garmo H, Zugna D, et al. Predicting prostate cancer death with different pretreatment risk stratification tools: a head-to-head comparison in a nationwide cohort study[J]. Eur Urol, 2020, 77(2): 180-8. |
4 | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-49. |
5 | Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30. |
6 | Taylor LG, Canfield SE, Du XL. Review of major adverse effects of androgen-deprivation therapy in men with prostate cancer[J]. Cancer, 2009, 115(11): 2388-99. |
7 | Zarour L, Alumkal J. Emerging therapies in castrate-resistant prostate cancer[J]. Curr Urol Rep, 2010, 11(3): 152-8. |
8 | Boulos S, Mazhar D. The evolving role of chemotherapy in prostate cancer[J]. Future Oncol, 2017, 13(12): 1091-5. |
9 | Sebesta EM, Anderson CB. The surgical management of prostate cancer[J]. Semin Oncol, 2017, 44(5): 347-57. |
10 | Shevach J, Chaudhuri P, Morgans AK. Adjuvant therapy in high-risk prostate cancer[J]. Clin Adv Hematol Oncol, 2019, 17(1): 45-53. |
11 | Chistiakov DA, Myasoedova VA, Grechko AV, et al. New biomarkers for diagnosis and prognosis of localized prostate cancer[J]. Semin Cancer Biol, 2018, 52(Pt 1): 9-16. |
12 | Michlewski G, Cáceres JF. Post-transcriptional control of miRNA biogenesis[J]. RNA, 2019, 25(1): 1-16. |
13 | Liu T, Zhang Q, Zhang JK, et al. EVmiRNA: a database of miRNA profiling in extracellular vesicles[J]. Nucleic Acids Res, 2019, 47(D1): D89-93. |
14 | Ali Syeda Z, Langden SSS, Munkhzul C, et al. Regulatory mechanism of microRNA expression in cancer[J]. Int J Mol Sci, 2020, 21(5): 1723-9. |
15 | Friedman RC, Farh KKH, Burge CB, et al. Most mammalian mRNAs are conserved targets of microRNAs[J]. Genome Res, 2009, 19(1): 92-105. |
16 | Cocks A, Del Vecchio F, Martinez-Rodriguez V, et al. Pro-tumoral functions of tumor-associated macrophage EV-miRNA[J]. Semin Cancer Biol, 2022, 86(Pt 1): 58-63. |
17 | Del Valle-Morales D, Le P, Saviana M, et al. The epitranscriptome in miRNAs: crosstalk, detection, and function in cancer[J]. Genes, 2022, 13(7): 1289-95. |
18 | Smolarz B, Durczyński A, Romanowicz H, et al. miRNAs in cancer (review of literature)[J]. Int J Mol Sci, 2022, 23(5): 2805-13. |
19 | Iqbal MA, Arora S, Prakasam G, et al. MicroRNA in lung cancer: role, mechanisms, pathways and therapeutic relevance[J]. Mol Aspects Med, 2019, 70: 3-20. |
20 | Kt RD, Karthick D, Saravanaraj KS, et al. The roles of microRNA in pancreatic cancer progression[J]. Cancer Invest, 2022, 40(8): 700-9. |
21 | Ismail A, Abulsoud AI, Fathi D, et al. The role of miRNAs in ovarian cancer pathogenesis and therapeutic resistance-A focus on signaling pathways interplay[J]. Pathol Res Pract, 2022, 240: 154222. |
22 | Hwang GR, Yuen JG, Ju JF. Roles of microRNAs in gastrointestinal cancer stem cell resistance and therapeutic development[J]. Int J Mol Sci, 2021, 22(4): 1624-36. |
23 | Doghish AS, Ismail A, El-Mahdy HA, et al. A review of the biological role of miRNAs in prostate cancer suppression and progression[J]. Int J Biol Macromol, 2022, 197: 141-56. |
24 | Mao XQ, Xu J, Wang W, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives[J]. Mol Cancer, 2021, 20(1): 131-8. |
25 | Tsoumakidou M. The advent of immune stimulating CAFs in cancer[J]. Nat Rev Cancer, 2023, 23(4): 258-69. |
26 | Wang YF, Liang HY, Zheng J. Exosomal microRNAs mediating crosstalk between cancer cells and cancer-associated fibroblasts in the tumor microenvironment[J]. Pathol Res Pract, 2022, 239: 154159. |
27 | Bullock MD, Pickard KM, Nielsen BS, et al. Pleiotropic actions of miR-21 highlight the critical role of deregulated stromal microRNAs during colorectal cancer progression[J]. Cell Death Dis, 2013, 4(6): e684-92. |
28 | Gandellini P, Giannoni E, Casamichele A, et al. MiR-205 hinders the malignant interplay between prostate cancer cells and associated fibroblasts[J]. Antioxid Redox Signal, 2014, 20(7): 1045-59. |
29 | Yan ZQ, Sheng ZM, Zheng YH, et al. Cancer-associated fibroblast-derived exosomal miR-18b promotes breast cancer invasion and metastasis by regulating TCEAL7[J]. Cell Death Dis, 2021, 12(12): 1120-32. |
30 | Xue F, Xu YH, Shen CC, et al. Non-coding RNA LOXL1-AS1 exhibits oncogenic activity in ovarian cancer via regulation of miR-18b-5p/VMA21 axis[J]. Biomedecine Pharmacother, 2020, 125: 109568. |
31 | Wang YY, Yan L, Yang S, et al. Long noncoding RNA AC073284.4 suppresses epithelial-mesenchymal transition by sponging miR-18b-5p in paclitaxel-resistant breast cancer cells[J]. J Cell Physiol, 2019, 234(12): 23202-15. |
32 | Komura K, Sweeney CJ, Inamoto T, et al. Current treatment strategies for advanced prostate cancer[J]. Int J Urol, 2018, 25(3): 220-31. |
33 | Swarbrick S, Wragg N, Ghosh S, et al. Systematic review of miRNA as biomarkers in Alzheimer's disease[J]. Mol Neurobiol, 2019, 56(9): 6156-67. |
34 | Pottoo FH, Iqubal A, Iqubal MK, et al. miRNAs in the regulation of cancer immune response: effect of miRNAs on cancer immunotherapy[J]. Cancers, 2021, 13(23): 6145-56. |
35 | Khan AQ, Ahmed EI, Elareer NR, et al. Role of miRNA-regulated cancer stem cells in the pathogenesis of human malignancies[J]. Cells, 2019, 8(8): 840-8. |
36 | Hussen BM, Hidayat HJ, Salihi A, et al. MicroRNA: a signature for cancer progression[J]. Biomedecine Pharmacother, 2021, 138: 111528. |
37 | Liang Y, Lu Q, Li W, et al. Reactivation of tumour suppressor in breast cancer by enhancer switching through NamiRNA network[J]. Nucleic Acids Res, 2021, 49(15): 8556-72. |
38 | Hu HH, Cheng RJ, Wang YB, et al. Oncogenic KRAS signaling drives evasion of innate immune surveillance in lung adenocarcinoma by activating CD47[J]. J Clin Invest, 2023, 133(2): e153470. |
39 | Liu LN, Zhang Y, Hu X, et al. MiR-138-5p inhibits prostate cancer cell proliferation and chemoresistance by targeting APOBEC3B[J]. Transl Oncol, 2023, 35: 101723-36. |
40 | Li WJ, Liu XZ, Dougherty EM, et al. MicroRNA-34a, prostate cancer stem cells, and therapeutic development[J]. Cancers, 2022, 14(18): 4538-50. |
41 | Angel CZ, Stafford MYC, McNally CJ, et al. MiR-21 is induced by hypoxia and down-regulates RHOB in prostate cancer[J]. Cancers, 2023, 15(4): 1291-309. |
42 | Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-74. |
43 | Cirri P, Chiarugi P. Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression[J]. Cancer Metastasis Rev, 2012, 31(1/2): 195-208. |
44 | Aprelikova O, Yu X, Palla J, et al. The role of miR-31 and its target gene SATB2 in cancer-associated fibroblasts[J]. Cell Cycle, 2010, 9(21): 4387-98. |
45 | Bronisz A, Godlewski J, Wallace JA, et al. Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320[J]. Nat Cell Biol, 2011, 14(2): 159-67. |
46 | Yao Q, Cao SY, Li C, et al. Micro-RNA-21 regulates TGF-β-induced myofibroblast differentiation by targeting PDCD4 in tumor-stroma interaction[J]. Int J Cancer, 2011, 128(8): 1783-92. |
47 | Wang DZ, Han X, Li C, et al. FBXL3 is regulated by miRNA-4735-3p and suppresses cell proliferation and migration in non-small cell lung cancer[J]. Pathol Res Pract, 2019, 215(2): 358-65. |
48 | Huber AL, Papp SJ, Chan AB, et al. CRY2 and FBXL3 cooperatively degrade c-MYC[J]. Mol Cell, 2016, 64(4): 774-89. |
[1] | 邵 珊, 白薇超, 邹鹏程, 罗敏娜, 赵新汉, 雷建军. 二甲双胍阻断乳腺癌细胞-间质细胞的交互作用:基于抑制肿瘤相关成纤维细胞缺氧诱导因子-1α的表达[J]. 南方医科大学学报, 2024, 44(3): 428-436. |
[2] | 许家铭, 林 龙, 陈琼慧, 李 兰. Hsa-miR-148a-3p通过下调DUSP1基因促进乳腺癌细胞的恶性行为[J]. 南方医科大学学报, 2023, 43(9): 1515-1524. |
[3] | 谢 彦, 李 澄, 张露露, 俞 飞, 臧士明, 王书奎, 王 峰. 68Ga-PSMA-I&T PET/CT评估初诊前列腺癌原发灶的肿瘤负荷[J]. 南方医科大学学报, 2022, 42(8): 1143-1148. |
[4] | 杨 明, 朱旭东, 沈 炀, 何 麒, 秦 远, 邵轶群, 袁 琳, 叶和松. MYBL2在前列腺癌患者组织中高表达并与不良预后相关[J]. 南方医科大学学报, 2022, 42(8): 1109-1118. |
[5] | 叶静静, 徐文琴, 陈天兵. 肝细胞癌中促癌miRNA调控网络分析与验证[J]. 南方医科大学学报, 2022, 42(1): 45-54. |
[6] | 李国平, 常秀亭, 罗小菊, 赵映淑, 王为服, 康新立. 褐藻素通过线粒体通路和氧化应激诱导前列腺癌细胞凋亡[J]. 南方医科大学学报, 2021, 41(6): 953-959. |
[7] | 徐彬兵, 郝敬兰, 谢倩文, 萨娜尔, 王诗虞, 杜晓文, 卢海成, 高 平, 石光耀, 董小明. 敲低EEFSEC可体外抑制前列腺癌细胞的增殖、迁移和侵袭[J]. 南方医科大学学报, 2021, 41(12): 1787-1794. |
[8] | 张河元, 陈南辉, 王晓红, 高白云, 凌木安, 陈 果, 吴志明, 李宇同, 钟伟枫, 潘 斌. 加权基因共表达网络挖掘并验证调控前列腺癌转移的枢纽基因[J]. 南方医科大学学报, 2021, 41(11): 1631-1640. |
[9] | 雷 婷, 肖 斌, 何咏茵, 孙朝晖, 李林海. 锌指蛋白ZNF652在乳腺癌组织和细胞中的高表达可促进乳腺癌的发生发展[J]. 南方医科大学学报, 2020, 40(12): 1732-1739. |
[10] | 韦莉莉,罗周翔,李金龙,李红卫,梁 瑶,李金连,申玉婷,李天柏,宋 捷,胡志明. 二甲双胍抑制酸性环境下的调节性T细胞增殖及功能[J]. 南方医科大学学报, 2019, 39(12): 1427-1435. |
[11] | 何强,王学涛,李欣,甄鑫. 基于多模态特征和多分类器融合的前列腺癌放疗中直肠并发症预测模型[J]. 南方医科大学学报, 2019, 39(08): 972-. |
[12] | 陈海平,向玘,刘大伟,魏强. 沉默CIT基因可抑制前列腺癌细胞的增殖和转移[J]. 南方医科大学学报, 2019, 39(03): 257-. |
[13] | 肖卓裕,陈明坤,杨建昆,杨诚,吕娴媛,田湖,刘存东. MTBP调控前列腺癌细胞的迁移和侵袭[J]. 南方医科大学学报, 2019, 39(01): 6-. |
[14] | 欧艺虹,姜耀东,李琦,庄永江,党强,谭万龙. 肥大细胞通过上调p21促进前列腺癌神经内分泌分化及增加对多西他赛化疗的抵抗性[J]. 南方医科大学学报, 2018, 38(06): 723-. |
[15] | 殷昭阳,齐思勇,成祥,郭靓,陈泓宇,施明. 经股动脉注射途径建立前列腺癌和乳腺癌骨转移模型[J]. 南方医科大学学报, 2017, 37(07): 914-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||