1 |
Collaborators G 2 N. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Neurol, 2019, 18(5): 459-80.
|
2 |
Campbell BCV, Khatri P. Stroke[J]. Lancet, 2020, 396(10244): 129-42.
|
3 |
Ghosh M, Lane M, Krizman E, et al. The transcription factor Pax6 contributes to the induction of GLT-1 expression in astrocytes through an interaction with a distal enhancer element[J]. J Neurochem, 2016, 136(2): 262-75.
|
4 |
Kim K, Lee SG, Kegelman TP, et al. Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics[J]. J Cell Physiol, 2011, 226(10): 2484-93.
|
5 |
Murphy-Royal C, Dupuis J, Groc L, et al. Astroglial glutamate transporters in the brain: regulating neurotransmitter homeostasis and synaptic transmission[J]. J Neurosci Res, 2017, 95(11): 2140-51.
|
6 |
Verkhratsky A, Nedergaard M. Physiology of astroglia[J]. Physiol Rev, 2018, 98(1): 239-389.
|
7 |
Danbolt NC, Furness DN, Zhou Y. Neuronal vs glial glutamate uptake: resolving the conundrum[J]. Neurochem Int, 2016, 98: 29-45.
|
8 |
Malik AR, Willnow TE. Excitatory amino acid transporters in physiology and disorders of the central nervous system[J]. Int J Mol Sci, 2019, 20(22): 5671.
|
9 |
Melone M, Ciriachi C, Pietrobon D, et al. Heterogeneity of astrocytic and neuronal GLT-1 at cortical excitatory synapses, as revealed by its colocalization with Na+/K+-ATPase α isoforms[J]. Cereb Cortex, 2019, 29(8): 3331-50.
|
10 |
Roberts RC, Roche JK, McCullumsmith RE. Localization of excitatory amino acid transporters EAAT1 and EAAT2 in human postmortem cortex: a light and electron microscopic study[J]. Neuroscience, 2014, 277: 522-40.
|
11 |
Kashem MA, Sultana N, Pow DV, et al. GLAST (GLutamate and ASpartate Transporter) in human prefrontal cortex; interactome in healthy brains and the expression of GLAST in brains of chronic alcoholics[J]. Neurochem Int, 2019, 125: 111-6.
|
12 |
Danbolt NC. Glutamate uptake[J]. Prog Neurobiol, 2001, 65(1): 1-105.
|
13 |
Suárez-Pozos E, Thomason EJ, Fuss B. Glutamate transporters: expression and function in oligodendrocytes[J]. Neurochem Res, 2020, 45(3): 551-60.
|
14 |
Pajarillo E, Rizor A, Lee J, et al. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: potential targets for neurotherapeutics[J]. Neuropharmacology, 2019, 161: 107559.
|
15 |
Banks WA, Kastin AJ, Huang W, et al. Leptin enters the brain by a saturable system independent of insulin[J]. Peptides, 1996, 17(2): 305-11.
|
16 |
Hu SJ, Cheng DB, Peng DT, et al. Leptin attenuates cerebral ischemic injury in rats by modulating the mitochondrial electron transport chain via the mitochondrial STAT3 pathway[J]. Brain Behav, 2019, 9(2): e01200.
|
17 |
Zhang WF, Jin YC, Wang D, et al. Neuroprotective effects of leptin on cerebral ischemia through JAK2/STAT3/PGC-1-mediated mitochondrial function modulation[J]. Brain Res Bull, 2020, 156: 118-30.
|
18 |
Zhang Y, Cheng DB, Jie CX, et al. Leptin alleviates endoplasmic reticulum stress induced by cerebral ischemia/reperfusion injury via the PI3K/Akt signaling pathway[J]. Biosci Rep, 2022, 42(12): BSR20221443.
|
19 |
Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20(1): 84-91.
|
20 |
Jiwaji Z, Hardingham GE. Good, bad, and neglectful: Astrocyte changes in neurodegenerative disease[J]. Free Radic Biol Med, 2022, 182: 93-9.
|
21 |
Liu ZW, AstrocytesChopp M., therapeutic targets for neuroprotection and neurorestoration in ischemic stroke[J]. Prog Neurobiol, 2016, 144: 103-20.
|
22 |
Pekny M, Wilhelmsson U, Pekna M. The dual role of astrocyte activation and reactive gliosis[J]. Neurosci Lett, 2014, 565: 30-8.
|
23 |
Michinaga S, Koyama Y. Pathophysiological responses and roles of astrocytes in traumatic brain injury[J]. Int J Mol Sci, 2021, 22(12): 6418.
|
24 |
Zhang SF, Shang DS, Shi H, et al. Function of astrocytes in neuroprotection and repair after ischemic stroke[J]. Eur Neurol, 2021, 84(6): 426-34.
|
25 |
Mahmoud S, Gharagozloo M, Simard C, et al. Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release[J]. Cells, 2019, 8(2): 184.
|
26 |
Yeh TH, Hwang HM, Chen JJ, et al. Glutamate transporter function of rat hippocampal astrocytes is impaired following the global ischemia[J]. Neurobiol Dis, 2005, 18(3): 476-83.
|
27 |
Fontana AC. Current approaches to enhance glutamate transporter function and expression[J]. J Neurochem, 2015, 134(6): 982-1007.
|
28 |
Roettger V, Lipton P. Mechanism of glutamate release from rat hippocampal slices during in vitro ischemia[J]. Neuroscience, 1996, 75(3): 677-85.
|
29 |
Rossi DJ, Oshima T, Attwell D. Glutamate release in severe brain ischaemia is mainly by reversed uptake[J]. Nature, 2000, 403(6767): 316-21.
|
30 |
Shen YL, Lu HL, Xu RN, et al. The expression of GLAST and GLT1 in a transient cerebral ischemia Mongolian gerbil model[J]. Neuropsychiatr Dis Treat, 2020, 16: 789-800.
|
31 |
Rao VL, Dogan A, Bowen KK, et al. Antisense knockdown of the glial glutamate transporter GLT-1 exacerbates hippocampal neuronal damage following traumatic injury to rat brain[J]. Eur J Neurosci, 2001, 13(1): 119-28.
|
32 |
Naranjo V, Contreras A, Merino B, et al. Specific deletion of the astrocyte leptin receptor induces changes in hippocampus glutamate metabolism, synaptic transmission and plasticity[J]. Neuroscience, 2020, 447: 182-90.
|
33 |
Zhang J, Deng Z, Liao J, et al. Leptin attenuates cerebral ischemia injury through the promotion of energy metabolism via the PI3K/Akt pathway[J]. J Cereb Blood Flow Metab, 2013, 33(4): 567-74.
|