| [1] |
Wu H, Liu Y, and Liu C. The Interregulatory Circuit Between non-coding RNA and Apoptotic Signaling in Diabetic Cardiomyopathy[J]. Noncoding RNA Res, 2024, 9(4): 1080-97. doi:10.1016/j.ncrna.2024.06.011
|
| [2] |
Marwick TH, Ritchie R, Shaw JE, et al. Implications of underlying mechanisms for the recognition and management of diabetic Cardiomyopathy[J]. J. Am. Coll. Cardiol, 2018, 71(3): 339-51. doi:10.1016/j.jacc.2017.11.019
|
| [3] |
Tan Y . and Zhang Z. Mechanisms of Diabetic Cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence[J]. Nat Rev Cardiol, 2020, 17(9): 585-607. doi:10.1038/s41569-020-0339-2
|
| [4] |
Wang M, Zhang S, Tian J, et al. Impaired iron-sulfur cluster synthesis induces mitochondrial parthanatos in diabetic cardio-myopathy[J]. Adv Sci (Weinh), 2025, 12(1): e2406695. doi:10.1002/advs.202406695
|
| [5] |
Tong M, Saito T, Zhai P, et al. Mitophagy is essential for maintaining cardiac function during high fat diet-induced diabetic cardio-myopathy[J]. Circ Res 2019, 124(9): 1360-71. doi:10.1161/circresaha.118.314607
|
| [6] |
Wu S, Lu Q, Ding Y, et al. Hyperglycemia-Driven Inhibition of AMP-activated protein Kinase alpha2 induces diabetic cardio-myo-pathy by promoting mitochondria-associated endoplasmic reticulum membranes in vivo [J]. Circulation, 2019, 139(16): 1913-36. doi:10.1161/circulationaha.118.033552
|
| [7] |
Lu QB, Sun HT, Zhou K, et al. Therapeutic Targeting of Decr1 Ameliorates Cardiomyopathy by Suppressing Mitochondrial Fatty Acid Oxidation in Diabetic Mice[J]. J Cachexia Sarcopenia Muscle. 2025, 16(2): e13761. doi:10.1002/jcsm.13761
|
| [8] |
李振钰, 许欣竹, 刘文俊, 等. 脾气虚大鼠心肌细胞线粒体Lon蛋白酶和ClpXP复合物表达的研究[J].中华中医药杂志, 2021, 36(6): 3616-9.
|
| [9] |
Werbner B, Tavakoli-Rouzbehani OM, Fatahian AN, et al. The dynamic interplay between cardiac mitochondrial health and myo-cardial structural remodeling in metabolic heart disease, aging, and heart failure[J]. The journal of cardiovascular aging, 2023, 3(1): 9. doi:10.20517/jca.2022.42
|
| [10] |
刘 蕾, 杨丽霞, 梁永林, 等. 中医药通过调控细胞自噬改善糖尿病心肌病的研究现状[J]. 中国临床药理学杂志, 2024, 40 (10): 1530-4.
|
| [11] |
Volpe C, Villar-Delfino PH, Dos AP, et al. Cellular death, reactive oxygen species (ROS) and diabetic complications[J]. Cell Death Dis, 2018, 9(2): 119. doi:10.1038/s41419-017-0135-z
|
| [12] |
Peng ML, Fu Y, Wu CW, et al. Signaling Pathways Related to Oxidative Stress in Diabetic Cardiomyopathy[J]. Front Endocrinol (Lausanne), 2022, 13: 907757. doi:10.3389/fendo.2022.907757
|
| [13] |
Zheng H, Zhu H, Liu X, Huang X, et al. Mitophagy in Diabetic Cardiomyopathy: Roles and Mechanisms[J]. Front Cell Dev Biol, 2021, 9: 750382. doi:10.3389/fcell.2021.750382
|
| [14] |
Yu W, Gao B, Li N, et al. Sirt3 deficiency exacerbates diabetic cardiac dysfunction: Role of Foxo3A-Parkin-mediated mitophagy[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(8): 1973-83. doi:10.1016/j.bbadis.2016.10.021
|
| [15] |
王 泽, 王秋虹, 李晓文, 等. 糖尿病胃轻瘫从“痿”论治探讨[J]. 中华中医药杂志, 2019, 34(10): 4705-8.
|
| [16] |
林心君, 胡海霞, 何昱霖, 等. 石斛合剂基于PKB/FoxO1通路抑制糖尿病大鼠肝糖异生的机制研究[J]. 湖南中医药大学学报, 2021, 41(8): 1166-71.
|
| [17] |
庄舒婷, 张家林, 邹玉卿, 等. 石斛合剂对2型糖尿病合并非酒精性脂肪肝大鼠AMPK/TFEB信号通路自噬蛋白的影响[J].中国实验方剂学杂志, 2020, 26(24): 53-8.
|
| [18] |
王海生, 谢永财, 李长征, 等. 石斛合剂对高脂高糖糖尿病大鼠大鼠心肌细胞Ca2+代谢的影响[J]. 福建中医药, 2020, 51(1): 47-50.
|
| [19] |
Ren BC, Zhang YF, Liu SS, et al. Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways[J]. J Cell Mol Med, 2020, 24(21): 12355-67. doi:10.1111/jcmm.15725
|
| [20] |
Zhou Y, Suo W, Zhang X, et al. Targeting mitochondrial quality control for diabetic cardiomyopathy: Therapeutic potential of hypoglycemic drugs[J]. Biomed Pharmacother, 2023, 168: 115669. doi:10.1016/j.biopha.2023.115669
|
| [21] |
Yang F, Qin Y, Wang Y, et al. Metformin inhibits the nlrp3 inflammasome via ampk/mtor-dependent effects in diabetic cardiomyopathy[J]. International journal of biological sciences, 2019, 15(5): 1010-9. doi:10.7150/ijbs.29680
|
| [22] |
John O D, Mushunje A T, Surugau N, et al. The metabolic and molecular mechanisms of α‑mangostin in cardiometabolic disorders (Review)[J]. International journal of molecular medicine, 2022, 50(3): 120. doi:10.3892/ijmm.2022.5176
|
| [23] |
Chen H Y, Hong Y H, Chiang Y F, et al. Effects of Rice-Husk Silica Liquid in Streptozotocin-Induced Diabetic Mice[J]. Metabolites, 2022, 12(10): 964. doi:10.3390/metabo12100964
|
| [24] |
Varga Z V, Giricz Z, Liaudet L, et al. Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy[J]. Biochimica et biophysica acta, 2015, 1852(2): 232-42. doi:10.1016/j.bbadis.2014.06.030
|
| [25] |
Jakubik D, Fitas A, Eyileten C, et al. MicroRNAs and long non-coding RNAs in the pathophysiological processes of diabetic cardiomyopathy: emerging biomarkers and potential therapeutics[J]. Cardiovascular diabetology, 2021, 20(1): 55. doi:10.1186/s12933-021-01245-2
|
| [26] |
Rajesh M, Mukhopadhyay P, Bátkai S, et al. Cannabinoid receptor 2 activation alleviates diabetes-induced cardiac dysfunction, inflammation, oxidative stress, and fibrosis[J]. GeroScience, 2022, 44(3): 1727-41. doi:10.1007/s11357-022-00565-9
|
| [27] |
Chen X, Yun C, Zheng H, et al. The protective effects of S14G-humanin (HNG) against streptozotocin (STZ)‑induced cardiac dysfunction[J]. Bioengineered, 2021, 12(1): 5491-503. doi:10.1080/21655979.2021.1964894
|
| [28] |
Becher P M, Lindner D, Fröhlich M, et al. Assessment of cardiac inflammation and remodeling during the development of streptozotocin-induced diabetic cardiomyopathy in vivo: a time course analysis[J]. International journal of molecular medicine, 2013, 32(1): 158-64. doi:10.3892/ijmm.2013.1368
|
| [29] |
Ketenci M, Zablocki D, Sadoshima J. Mitochondrial quality control mechanisms during diabetic cardiomyopathy[J]. JMA journal, 2022, 5(4): 407-15. doi:10.31662/jmaj.2022-0155
|
| [30] |
Link W. Introduction to FOXO Biology[J]. Methods Mol Biol, 2019, 1890: 1-9. doi:10.1007/978-1-4939-8900-3_1
|
| [31] |
Wu J, Yang Y, Gao Y, et al. Melatonin attenuates anoxia/reox-ygenation injury by inhibiting excessive mitophagy through the mt2/sirt3/foxo3a signaling pathway in h9c2 cells[J]. 2020, 14: 2047-60. doi:10.2147/dddt.s248628
|
| [32] |
Cai C, Wu F, He J, et al. Mitochondrial quality control in diabetic cardiomyopathy: from molecular mechanisms to therapeutic strategies[J]. International journal of biological sciences,2022,18(14): 5276-90. doi:10.7150/ijbs.75402
|
| [33] |
Huang L, Yao T, Chen J, et al. Effect of Sirt3 on retinal pigment epithelial cells in high glucose through Foxo3a/ PINK1-Parkin pathway mediated mitophagy[J]. Experimental eye research, 2022, 218, 109015. doi:10.1016/j.exer.2022.109015
|
| [34] |
Gong Y, Tang N, Liu P, et al. Newcastle disease virus degrades SIRT3 via PINK1-PRKN-dependent mitophagy to reprogram energy metabolism in infected cells. Newcastle disease virus degrades SIRT3 via PINK1-PRKN-dependent mitophagy to reprogram energy metabolism in infected cells[J]. Autophagy, 2022, 18(7): 1503-21. doi:10.1080/15548627.2021.1990515
|