| [1] |
Hills M, Armitage P. The two-period cross-over clinical trial[J]. Brit J Clinical Pharma, 1979, 8(1): 7-20. doi:10.1111/j.1365-2125.1979.tb05903.x
|
| [2] |
Lui KJ, Chang KC. Test non-inferiority (and equivalence) based on the odds ratio under a simple crossover trial[J]. Stat Med, 2011, 30(11): 1230-42. doi:10.1002/sim.4166
|
| [3] |
Lui KJ. Sample size determination for testing equality in Poisson frequency data under an AB/BA crossover trial[J]. Pharm Stat, 2013, 12(2): 74-81. doi:10.1002/pst.1555
|
| [4] |
Chow SC, Wang H. On sample size calculation in bioequivalence trials[J]. J Pharmacokinet Pharmacodyn, 2001, 28(2): 155-69. doi:10.1023/a:1011503032353
|
| [5] |
Chow SC, Cheng B, Cosmatos D. On power and sample size calculation for QT studies with recording replicates at given time point[J]. J Biopharm Stat, 2008, 18(3): 483-93. doi:10.1080/10543400801995452
|
| [6] |
Siyasinghe NM, Sooriyarachchi MR. Guidelines for calculating sample size in 2x2 crossover trials: a simulation study[J]. J Natl Sci Found Sri Lanka, 2011, 39(1): 77. doi:10.4038/jnsfsr.v39i1.2929
|
| [7] |
Liang KY, Zeger SL.. Longitudinal data-analysis using generalized linear-models[J]. Biometrika, 1986, 73(1): 13-22. doi:10.1093/biomet/73.1.13
|
| [8] |
高燕宁, 蔡文玮, 周纪芗. 广义估计方程GEE1与纵向资料的回归分析[J]. 数理医药学杂志, 1994, 7(2): 118-23.
|
| [9] |
高燕宁, 刘欣华, 蔡文玮, 等. 广义估计方程GEE2与GEE1的比较[J]. 数理医药学杂志, 1996, 9(4): 321-2.
|
| [10] |
夏 彦, 潘晓平, 刘元元, 等. 广义估计方程在临床试验重复测量资料中的应用[J]. 现代预防医学, 2005, 32(5): 444-5.
|
| [11] |
宋秋月, 易 东, 伍亚舟. 不同作业相关结构的纵向数据GEE分析[C]//2017年中国卫生统计学学术年会论文集. 武汉, 2017: 76.
|
| [12] |
Zou GY, Donner A. Extension of the modified Poisson regression model to prospective studies with correlated binary data[J]. Stat Methods Med Res, 2013, 22(6): 661-70. doi:10.1177/0962280211427759
|
| [13] |
Ford WP, Westgate PM. A comparison of bias-corrected empirical covariance estimators with generalized estimating equations in small-sample longitudinal study settings[J]. Stat Med, 2018, 37(28): 4318-29. doi:10.1002/sim.7917
|
| [14] |
Li P, Redden DT. Small sample performance of bias-corrected sandwich estimators for cluster-randomized trials with binary outcomes[J]. Stat Med, 2015, 34(2): 281-96. doi:10.1002/sim.6344
|
| [15] |
Pan W. Sample size and power calculations with correlated binary data[J]. Control Clin Trials, 2001, 22(3): 211-27. doi:10.1016/s0197-2456(01)00131-3
|
| [16] |
Jung SH, Ahn CW. Sample size for a two-group comparison of repeated binary measurements using GEE[J]. Stat Med, 2005, 24(17): 2583-96. doi:10.1002/sim.2136
|
| [17] |
Kim HY, Williamson JM, Lyles CM. Sample-size calculations for studies with correlated ordinal outcomes[J]. Stat Med, 2005, 24(19): 2977-87. doi:10.1002/sim.2162
|
| [18] |
Shih WJ. Sample size and power calculations for periodontal and other studies with clustered samples using the method of generalized estimating equations[J]. Biom J, 1997, 39(8): 899-908. doi:10.1002/bimj.4710390803
|
| [19] |
Teerenstra S, Lu B, Preisser JS, et al. Sample size considerations for GEE analyses of three-level cluster randomized trials[J]. Biometrics, 2010, 66(4): 1230-7. doi:10.1111/j.1541-0420.2009.01374.x
|
| [20] |
Li F, Forbes AB, Turner EL, et al. Power and sample size requirements for GEE analyses of cluster randomized crossover trials[J]. Stat Med, 2019, 38(4): 636-49. doi:10.1002/sim.7995
|
| [21] |
Li F, Turner EL, Preisser JS. Sample size determination for GEE analyses of stepped wedge cluster randomized trials[J]. Biometrics, 2018, 74(4): 1450-8. doi:10.1111/biom.12918
|
| [22] |
Li F. Design and analysis considerations for cohort stepped wedge cluster randomized trials with a decay correlation structure[J]. Stat Med, 2020, 39(4): 438-55. doi:10.1002/sim.8415
|
| [23] |
Zhang S, Cao J, Ahn C. A GEE approach to determine sample size for pre- and post-intervention experiments with dropout[J]. Comput Stat Data Anal, 2014, 69: 10.1016/j.csda.2013.07.037. doi:10.1016/j.csda.2013.07.037
|
| [24] |
Tang YQ. Power and sample size for GEE analysis of incomplete paired outcomes in 2 × 2 crossover trials[J]. Pharm Stat, 2021, 20(4): 820-39. doi:10.1002/pst.2112
|
| [25] |
刘 凯. 基于广义估计方程样本量的计算[D]. 大连: 大连理工大学, 2020.
|
| [26] |
Tang YQ. A noniterative sample size procedure for tests based on t distributions[J]. Stat Med, 2018, 37(22): 3197-213. doi:10.1002/sim.7807
|
| [27] |
Spiegelman D, Hertzmark E. Easy SAS calculations for risk or prevalence ratios and differences[J]. Am J Epidemiol, 2005, 162(3): 199-200. doi:10.1093/aje/kwi188
|
| [28] |
Mancl LA, DeRouen TA. A covariance estimator for GEE with improved small-sample properties[J]. Biometrics, 2001, 57(1): 126-34. doi:10.1111/j.0006-341x.2001.00126.x
|
| [29] |
Kauermann G, Carroll RJ. A note on the efficiency of sandwich covariance matrix estimation[J]. J Am Stat Assoc, 2001, 96(456): 1387-96. doi:10.1198/016214501753382309
|
| [30] |
Huang YJ, Pan JX. Joint generalized estimating equations for longitudinal binary data[J]. Comput Stat Data Anal, 2021, 155: 107110. doi:10.1016/j.csda.2020.107110
|
| [31] |
Tsai MY. Concordance correlation coefficients estimated by generalized estimating equations and variance components for longitudinal repeated measurements[J]. Stat Med, 2017, 36(8): 1319-33. doi:10.1002/sim.7207
|
| [32] |
Janse RJ, Hoekstra T, Jager KJ, et al. Conducting correlation analysis: important limitations and pitfalls[J]. Clin Kidney J, 2021, 14(11): 2332-7. doi:10.1093/ckj/sfab085
|