南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (8): 1791-1799.doi: 10.12122/j.issn.1673-4254.2025.08.23
• • 上一篇
收稿日期:
2025-03-03
出版日期:
2025-08-20
发布日期:
2025-09-05
通讯作者:
倪铭
E-mail:1425067966@qq.com;nm@sicau.edu.cn
作者简介:
赵涛涛,在读硕士研究生,E-mail: 1425067966@qq.com
基金资助:
Taotao ZHAO(), Ming NI(
), Shunxing XIA, Yuehao JIAO, Yating HE
Received:
2025-03-03
Online:
2025-08-20
Published:
2025-09-05
Contact:
Ming NI
E-mail:1425067966@qq.com;nm@sicau.edu.cn
摘要:
目的 为解决口腔全景片中异常牙识别在目标检测方面的不足,通过对基准模型YOLOv11n进行优化,提出YOLOv11-TDSP模型。 方法 融合SHSA单头注意力机制与backbone层的C2PSA,形成新的C2PSA_SHSA注意力机制,通过部分输入通道运用单头注意力,削减计算冗余,提升模型效率与检测准确性。在head层增设小目标检测层,解决小目标易漏检、误检的难题。实施两次结构化剪枝,降低模型参数量,避免过拟合,提升平均精度。训练前期,采用亮度增强、伽马对比度调整等数据增强手段,增强模型泛化能力。 结果 优化后的YOLOv11-TDSP模型精度达94.5%、召回率92.3%、平均精度95.8%,相比基准模型YOLOv11n,分别提升6.9%、7.4%、5.6%。与高精度的YOLOv11x相比,参数量和计算量仅为其12%、13%。 结论 成功实现多种牙齿病症的轻量化、高精准识别。
赵涛涛, 倪铭, 夏顺兴, 焦粤豪, 何亚婷. YOLOv11-TDSP:口腔全景片的轻量化高精度异常牙检测模型[J]. 南方医科大学学报, 2025, 45(8): 1791-1799.
Taotao ZHAO, Ming NI, Shunxing XIA, Yuehao JIAO, Yating HE. An lightweight algorithm for multi-dimensional optimization of intelligent detection of dental abnormalities on panoramic oral X-ray images[J]. Journal of Southern Medical University, 2025, 45(8): 1791-1799.
Species | Train | valid | Test | All |
---|---|---|---|---|
Decayed tooth | 315 | 82 | 49 | 446 |
Impacted tooth | 731 | 140 | 51 | 922 |
Snagglet | 135 | 28 | 11 | 174 |
Root canal therapy | 235 | 48 | 23 | 306 |
Dental crown | 221 | 42 | 19 | 282 |
Dental implantroot system | 66 | 12 | 11 | 89 |
Dental implant | 60 | 15 | 8 | 83 |
Dental filling | 230 | 45 | 22 | 297 |
表1 标签数量
Tab.1 Number of tags
Species | Train | valid | Test | All |
---|---|---|---|---|
Decayed tooth | 315 | 82 | 49 | 446 |
Impacted tooth | 731 | 140 | 51 | 922 |
Snagglet | 135 | 28 | 11 | 174 |
Root canal therapy | 235 | 48 | 23 | 306 |
Dental crown | 221 | 42 | 19 | 282 |
Dental implantroot system | 66 | 12 | 11 | 89 |
Dental implant | 60 | 15 | 8 | 83 |
Dental filling | 230 | 45 | 22 | 297 |
图1 8种问题牙的具体特征图
Fig.1 Specific features of 8 kinds of problematic teeth. A: Decayed tooth. B: Root canal therapy. C: Decayed tooth. D: Snagglet. E: Dental crown. F: Dental filling. G: Dental implant root system. H: Dental implant.
Model | P (%) | R (%) | mAP (%) | Param (s) | FLOPs (G) |
---|---|---|---|---|---|
Baseline | 89.0 | 87.0 | 90.2 | 2.5 | 6.3 |
+SimAM | 89.1 | 82.4 | 90.5 | 2.5 | 6.3 |
+Biformer | 90.4 | 86.0 | 90.1 | 2.5 | 6.3 |
+SHSA | 91.3 | 88.8 | 91.7 | 2.5 | 6.3 |
表2 注意力机制对比实验
Tab.2 Results of comparative experiment of the attention mechanism
Model | P (%) | R (%) | mAP (%) | Param (s) | FLOPs (G) |
---|---|---|---|---|---|
Baseline | 89.0 | 87.0 | 90.2 | 2.5 | 6.3 |
+SimAM | 89.1 | 82.4 | 90.5 | 2.5 | 6.3 |
+Biformer | 90.4 | 86.0 | 90.1 | 2.5 | 6.3 |
+SHSA | 91.3 | 88.8 | 91.7 | 2.5 | 6.3 |
Model | P (%) | R (%) | mAP (%) | Params (M) | FLOPs (G) |
---|---|---|---|---|---|
YOLOv11n | 89.0 | 87.0 | 90.2 | 2.5 | 6.3 |
YOLOv11l | 91.3 | 88.8 | 95.0 | 25.0 | 86.6 |
YOLOv11s | 93.0 | 91.0 | 95.2 | 9.4 | 21.3 |
YOLOv11x | 95.9 | 93.5 | 96.8 | 56.8 | 194.5 |
表3 YOLOv11系列对比
Tab.3 Comparison of YOLOv11 series models
Model | P (%) | R (%) | mAP (%) | Params (M) | FLOPs (G) |
---|---|---|---|---|---|
YOLOv11n | 89.0 | 87.0 | 90.2 | 2.5 | 6.3 |
YOLOv11l | 91.3 | 88.8 | 95.0 | 25.0 | 86.6 |
YOLOv11s | 93.0 | 91.0 | 95.2 | 9.4 | 21.3 |
YOLOv11x | 95.9 | 93.5 | 96.8 | 56.8 | 194.5 |
Placeof modification | mAP (%) | Params (M) | FLOPs (G) |
---|---|---|---|
YOLOv11-SHSA-P2 | 94.9 | 9.0 | 31.6 |
+First pruning | 95.0 | 9.0 | 30.0 |
+First pruning+second pruning | 95.8 | 7.2 | 25.5 |
表 4 网络结构的剪枝效果
Tab.4 Pruning effect of the network structure
Placeof modification | mAP (%) | Params (M) | FLOPs (G) |
---|---|---|---|
YOLOv11-SHSA-P2 | 94.9 | 9.0 | 31.6 |
+First pruning | 95.0 | 9.0 | 30.0 |
+First pruning+second pruning | 95.8 | 7.2 | 25.5 |
Model | P (%) | R (%) | mAP (%) | Params (M) | FLOPs (G) | |
---|---|---|---|---|---|---|
Baseline | 89.0 | 87.0 | 90.2 | 2.5 | 6.3 | 5.5 |
+SHSA | 91.3 | 88.8 | 91.7 | 2.5 | 6.3 | 5.5 |
+p2 | 92.0 | 93.5 | 94.9 | 9.0 | 31.0 | 18.9 |
+First pruning | 82.3 | 82.5 | 85.8 | 2.5 | 6.3 | 5.5 |
+First pruning+second pruning | 82.5 | 83.1 | 87.7 | 2.5 | 6.3 | 5.0 |
+SHSA+P2 | 94.2 | 92.0 | 94.9 | 9.0 | 31.6 | 18.7 |
+SHSA+P2+First pruning | 95.2 | 89.7 | 95.0 | 9.0 | 30.0 | 18.7 |
Ours | 94.5 | 92.3 | 95.8 | 7.2 | 25.5 | 15.0 |
表5 消融实验
Tab.5 Ablation experiment
Model | P (%) | R (%) | mAP (%) | Params (M) | FLOPs (G) | |
---|---|---|---|---|---|---|
Baseline | 89.0 | 87.0 | 90.2 | 2.5 | 6.3 | 5.5 |
+SHSA | 91.3 | 88.8 | 91.7 | 2.5 | 6.3 | 5.5 |
+p2 | 92.0 | 93.5 | 94.9 | 9.0 | 31.0 | 18.9 |
+First pruning | 82.3 | 82.5 | 85.8 | 2.5 | 6.3 | 5.5 |
+First pruning+second pruning | 82.5 | 83.1 | 87.7 | 2.5 | 6.3 | 5.0 |
+SHSA+P2 | 94.2 | 92.0 | 94.9 | 9.0 | 31.6 | 18.7 |
+SHSA+P2+First pruning | 95.2 | 89.7 | 95.0 | 9.0 | 30.0 | 18.7 |
Ours | 94.5 | 92.3 | 95.8 | 7.2 | 25.5 | 15.0 |
Model | P (%) | R (%) | mAP (%) | Params (M) | FLOPs (G) | |
---|---|---|---|---|---|---|
YOLOv5x | 91.0 | 88.0 | 89.0 | 97.2 | 246.9 | 195.0 |
YOLOv8n | 93.6 | 88.5 | 93.4 | 3.0 | 8.1 | 6.3 |
YOLOv8x | 96.3 | 93.6 | 96.0 | 68.1 | 257.4 | 136.8 |
YOLOv9c | 96.0 | 93.9 | 96.6 | 25.3 | 102.4 | 51.6 |
YOLOv10n | 81.6 | 83.0 | 87.7 | 2.6 | 8.2 | 5.8 |
YOLOv11n | 89.0 | 87.0 | 90.2 | 2.5 | 6.3 | 5.5 |
YOLOv11l | 91.3 | 88.8 | 95.0 | 25.0 | 86.6 | 50.0 |
YOLOv11s | 93.0 | 91.0 | 95.2 | 9.4 | 21.3 | 19.2 |
YOLOv11x | 95.0 | 93.0 | 96.8 | 56.8 | 194.5 | 194.5 |
RT-DETR | 94.8 | 93.5 | 96.1 | 32.0 | 108.0 | 66.2 |
Mask-RCNN | 89.0 | 90.4 | 90.8 | 28.0 | 25.0 | 30.0 |
SSD | 96.8 | 89.6 | 95.1 | 24.6 | 30.7 | 94.1 |
Faster R-CNN | 97.1 | 93.8 | 96.7 | 28.3 | 37.6 | 108.1 |
RetinaNet | 88.6 | 76.4 | 81.5 | 36.4 | 68.7 | 139.4 |
CenterNet | 90.0 | 75.3 | 80.1 | 32.6 | 35.0 | 123.9 |
EfficientDet | 78.3 | 50.4 | 62.1 | 3.8 | 4.7 | 15.1 |
D-FINE-N | 90.4 | 93.9 | 94.5 | 4.0 | 7.0 | 57.9 |
YOLOv11-TDSP | 94.5 | 92.3 | 95.8 | 7.2 | 25.5 | 15.0 |
表6 模型对比试验
Tab.6 Model comparison experiment
Model | P (%) | R (%) | mAP (%) | Params (M) | FLOPs (G) | |
---|---|---|---|---|---|---|
YOLOv5x | 91.0 | 88.0 | 89.0 | 97.2 | 246.9 | 195.0 |
YOLOv8n | 93.6 | 88.5 | 93.4 | 3.0 | 8.1 | 6.3 |
YOLOv8x | 96.3 | 93.6 | 96.0 | 68.1 | 257.4 | 136.8 |
YOLOv9c | 96.0 | 93.9 | 96.6 | 25.3 | 102.4 | 51.6 |
YOLOv10n | 81.6 | 83.0 | 87.7 | 2.6 | 8.2 | 5.8 |
YOLOv11n | 89.0 | 87.0 | 90.2 | 2.5 | 6.3 | 5.5 |
YOLOv11l | 91.3 | 88.8 | 95.0 | 25.0 | 86.6 | 50.0 |
YOLOv11s | 93.0 | 91.0 | 95.2 | 9.4 | 21.3 | 19.2 |
YOLOv11x | 95.0 | 93.0 | 96.8 | 56.8 | 194.5 | 194.5 |
RT-DETR | 94.8 | 93.5 | 96.1 | 32.0 | 108.0 | 66.2 |
Mask-RCNN | 89.0 | 90.4 | 90.8 | 28.0 | 25.0 | 30.0 |
SSD | 96.8 | 89.6 | 95.1 | 24.6 | 30.7 | 94.1 |
Faster R-CNN | 97.1 | 93.8 | 96.7 | 28.3 | 37.6 | 108.1 |
RetinaNet | 88.6 | 76.4 | 81.5 | 36.4 | 68.7 | 139.4 |
CenterNet | 90.0 | 75.3 | 80.1 | 32.6 | 35.0 | 123.9 |
EfficientDet | 78.3 | 50.4 | 62.1 | 3.8 | 4.7 | 15.1 |
D-FINE-N | 90.4 | 93.9 | 94.5 | 4.0 | 7.0 | 57.9 |
YOLOv11-TDSP | 94.5 | 92.3 | 95.8 | 7.2 | 25.5 | 15.0 |
[1] | 陆海霞, 陶丹英, 卢展民, 等. 第四次全国口腔健康流行病学调查-背景和方法[C]//2018年中华口腔医学会第十八次口腔预防医学学术年会论文汇编. 西安, 2018: 23.. |
[2] | Tandon D, Rajawat J. Present and future of artificial intelligence in dentistry[J]. J Oral Biol Craniofac Res, 2020, 10(4): 391-6. doi:10.1016/j.jobcr.2020.07.015 |
[3] | 刘 曼, 孟 耀, 何 勇, 等. 口腔全景片评价更年期妇女骨质疏松的研究[J]. 国际口腔医学杂志, 2017, 44(2): 165-9. doi:10.7518/gjkq.2017.02.010 |
[4] | 张丽娟. 数字化全景片口腔科应用价值分析[J]. 影像研究与医学应用, 2020, 4(5): 42-3. |
[5] | 李惠玲. 口腔全景片在阻生齿拔除术中的应用价值[J]. 现代预防医学, 2012, 39(17): 4566-7. |
[6] | Oliveira W, Albuquerque Santos M, Burgardt CAP, et al. Estimation of human age using machine learning on panoramic radiographs for Brazilian patients[J]. Sci Rep, 2024, 14(1): 19689. doi:10.1038/s41598-024-70621-1 |
[7] | Lin ZT, Zhou CC, Hu ZY, et al. Expert consensus on imaging diagnosis and analysis of early correction of childhood malocclusion[J]. Int J Oral Sci, 2025, 17(1): 21. doi:10.1038/s41368-025-00351-1 |
[8] | 张 利, 李生娇, 施 雄, 等. 口腔全景片图像质量影响因素分析[J]. 口腔颌面外科杂志, 2018, 28(4): 225-8. |
[9] | 王晓艳, 张铁军, 任文革, 等. 影响口腔全景片摄影图像质量因素的探讨[C]//第14次全国口腔颌面医学影像学专题研讨会暨国家级口腔颌面医学影像学新进展学习班论文汇编. 长春, 2016: 106. |
[10] | Mühlbacher AC, Juhnke C. Patient preferences versus physicians' judgement: does it make a difference in healthcare decision making?[J]. Appl Health Econ Health Policy, 2013, 11(3): 163-80. doi:10.1007/s40258-013-0023-3 |
[11] | 吴志力, 吴 宇. 目标检测集成框架在医学图像AI辅助分析中的应用[J]. 人工智能, 2018, 5(4): 38-50. |
[12] | Maganur PC, Vishwanathaiah S, Mashyakhy M, et al. Development of artificial intelligence models for tooth numbering and detection: a systematic review[J]. Int Dent J, 2024, 74(5): 917-29. doi:10.1016/j.identj.2024.04.021 |
[13] | Yu HJ, Cao Z, Pang GZ, et al. A deep-learning system for diagnosing ectopic eruption[J]. J Dent, 2025, 152: 105399. doi:10.1016/j.jdent.2024.105399 |
[14] | Jin L, Tang Y, Zhou WY, et al. Detection of three-rooted mandibular first molars on panoramic radiographs using deep learning[J]. Sci Rep, 2024, 14(1): 30392. doi:10.1038/s41598-024-82378-8 |
[15] | Yoon K, Jeong HM, Kim JW, et al. AI-based dental caries and tooth number detection[J]. Int Dent J, 2024, 74: S213-4. doi:10.1016/j.identj.2024.07.037 |
[16] | Ying SN, Huang F, Shen XT, et al. Performance comparison of multifarious deep networks on caries detection with tooth X-ray images[J]. J Dent, 2024, 144: 104970. doi:10.1016/j.jdent.2024.104970 |
[17] | Bayati M, Alizadeh Savareh B, Ahmadinejad H, et al. Advanced AI-driven detection of interproximal caries in bitewing radiographs using YOLOv8[J]. Sci Rep, 2025, 15(1): 4641. doi:10.1038/s41598-024-84737-x |
[18] | Zhao XT, Xu TK, Peng L, et al. Recognition and segmentation of teeth and mandibular nerve canals in panoramic dental X-rays by Mask RCNN[J]. Displays, 2023, 78: 102447. doi:10.1016/j.displa.2023.102447 |
[19] | Mărginean AC, Mureşanu S, Hedeşiu M, et al. Teeth segmentation and carious lesions segmentation in panoramic X-ray images using CariSeg, a networks' ensemble[J]. Heliyon, 2024, 10(10): e30836. doi:10.1016/j.heliyon.2024.e30836 |
[20] | 孙召飞, 俞经虎, 朱行飞, 等. 基于改进YOLOv5s的口腔全景片牙齿病症识别算法[J]. 中国激光, 2024, 51(15): 1507106. |
[21] | Wang QM, Zhu XF, Sun ZF, et al. Optimized Yolov8 feature fusion algorithm for dental disease detection[J]. Comput Biol Med, 2025, 187: 109778. doi:10.1016/j.compbiomed.2025.109778 |
[22] | Mendes AC, Pontes Quintanilha DB, Pinto Pessoa AC, et al. Automated tooth detection and numbering in panoramic radiographs using YOLO[J]. Procedia Comput Sci, 2025, 256: 1318-25. doi:10.1016/j.procs.2025.02.244 |
[23] | Khanam R, Hussain M.YOLOv11: An Overview of the Key Architectural Enhancements[J]. arXiv, .arXiv:2410.17725v1 |
[24] | Choi E, Pang KM, Jeong E, et al. Artificial intelligence in diagnosing dens evaginatus on periapical radiography with limited data availability[J]. Sci Rep, 2023, 13(1): 13232. doi:10.1038/s41598-023-40472-3 |
[25] | Zhao YA, Lv WY, Xu SL, et al. DETRs beat YOLOs on real-time object detection[C]//2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 16-22, 2024, Seattle, WA, USA. IEEE, 2024: 16965-74. doi:10.1109/cvpr52733.2024.01605 |
[26] | He KM, Gkioxari G, Dollár P, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision (ICCV). October 22-29, 2017, Venice, Italy. IEEE, 2017: 2980-8. doi:10.1109/iccv.2017.322 |
[27] | Reis D, Kupec J, Hong J, et al. Real-time flying object detection with YOLOv8[J]. arXiv, arXiv:. |
[28] | Wang CY, Yeh IH, Mark Liao HY. YOLOv9: learning what you want to learn using programmable gradient information[M]//Computer Vision-ECCV 2024. Cham: Springer Nature Switzerland, 2024: 1-21. doi:10.1007/978-3-031-72751-1_1 |
[29] | Hussain M, Khanam R. In-depth review of YOLOv1 to YOLOv10 variants for enhanced photovoltaic defect detection[J]. Solar, 2024, 4(3): 351-86. doi:10.3390/solar4030016 |
[30] | Li D, Han T, Zhou HT, et al. Lightweight Siamese network for visual tracking via FasterNet and feature adaptive fusion[C]//2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT). March 29-31, 2024, Nanjing, China. IEEE, 2024: 1-5. doi:10.1109/ainit61980.2024.10581687 |
[31] | 王 宁, 王汝丽, 沈晓芳, 等. 口腔全景片在多个牙根管治疗中的应用[J]. 临床和实验医学杂志, 2006, 5(12): 1971. |
[32] | 王曼玲, 孙兴龙, 王伦昌. 数字化全景片在口腔治疗中的应用价值[J]. 中外医学研究, 2013, 11(8): 61-3. doi:10.3969/j.issn.1674-6805.2013.08.044 |
[33] | Wang B, He B, Li C, et al. Relation-based self-distillation method for 2D object detection[J]. Sci Rep, 2025, 15(1): 9329. doi:10.1038/s41598-025-93072-8 |
[34] | Suwannaphong T, Jovan F, Craddock I, et al. Optimising TinyML with quantization and distillation of transformer and mamba models for indoor localisation on edge devices[J]. Sci Rep, 2025, 15(1): 10081. doi:10.1038/s41598-025-94205-9 |
[1] | 钟友闻, 车文刚, 高盛祥. 轻型多尺度黑色素瘤目标检测网络模型的建立:基于注意力机制调控[J]. 南方医科大学学报, 2022, 42(11): 1662-1671. |
[2] | 邓杰航,何冬冬,卓家鸿,赵 建,肖 成,康晓东,胡孙林,顾国生,刘 超. 复杂背景干扰下硅藻图像的深度网络识别与定位[J]. 南方医科大学学报, 2020, 40(02): 183-189. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||