[1] |
Gerstberger S, Jiang QW, Ganesh K. Metastasis[J]. Cell, 2023, 186(8): 1564-79. doi:10.1016/j.cell.2023.03.003
|
[2] |
Dillekås H, Rogers MS, Straume O. Are 90% of deaths from cancer caused by metastases[J]? Cancer Med, 2019, 8(12): 5574-6. doi:10.1002/cam4.2474
|
[3] |
Wang QJ, Shao XT, Zhang YX, et al. Role of tumor microenvironment in cancer progression and therapeutic strategy[J]. Cancer Med, 2023, 12(10): 11149-65. doi:10.1002/cam4.5698
|
[4] |
Lasser SA, Ozbay Kurt FG, Arkhypov I, et al. Myeloid-derived suppressor cells in cancer and cancer therapy[J]. Nat Rev Clin Oncol, 2024, 21(2): 147-64. doi:10.1038/s41571-023-00846-y
|
[5] |
Mohammad Mirzaei N, Shahriyari L. Modeling cancer progression: an integrated workflow extending data-driven kinetic models to bio-mechanical PDE models[J]. Phys Biol, 2024, 21(2): 022001. doi:10.1088/1478-3975/ad2777
|
[6] |
张浩轩, 陆 进, 蒋成义, 等. 基于人工智能技术的鼻咽癌风险预测模型的构建与评价[J]. 南方医科大学学报, 2023, 43(2): 271-9. doi:10.12122/j.issn.1673-4254.2023.02.16
|
[7] |
罗 钞, 王高明, 胡力文, 等. 食管癌患者术后预测模型的构建和验证: 基于SEER数据库[J]. 南方医科大学学报, 2022, 42(6): 794-804.
|
[8] |
Umansky V, Blattner C, Gebhardt C, et al. The role of myeloid-derived suppressor cells (MDSC) in cancer progression[J]. Vaccines, 2016, 4(4): 36. doi:10.3390/vaccines4040036
|
[9] |
Yao CY, Wu SL, Kong J, et al. Angiogenesis in hepatocellular carcinoma: mechanisms and anti-angiogenic therapies[J]. Cancer Biol Med, 2023, 20(1): 25-43.
|
[10] |
Ghalehbandi S, Yuzugulen J, Pranjol MZI, et al. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF[J]. Eur J Pharmacol, 2023, 949: 175586. doi:10.1016/j.ejphar.2023.175586
|
[11] |
Niland S, Riscanevo AX, Eble JA. Matrix metalloproteinases shape the tumor microenvironment in cancer progression[J]. Int J Mol Sci, 2021, 23(1): 146. doi:10.3390/ijms23010146
|
[12] |
Iglesias-Escudero M, Arias-González N, Martínez-Cáceres E. Regulatory cells and the effect of cancer immunotherapy[J]. Mol Cancer, 2023, 22(1): 26. doi:10.1186/s12943-023-01714-0
|
[13] |
Galassi C, Chan TA, Vitale I, et al. The hallmarks of cancer immune evasion[J]. Cancer Cell, 2024, 42(11): 1825-63. doi:10.1016/j.ccell.2024.09.010
|
[14] |
Jiang ZJ, Fang ZJ, Hong DS, et al. Cancer immunotherapy with "vascular-immune"crosstalk as entry point: associated mechanisms, therapeutic drugs and nano-delivery systems[J]. Int J Nanomed, 2024, 19: 7383-98. doi:10.2147/ijn.s467222
|
[15] |
Dutta S, Ganguly A, Chatterjee K, et al. Targets of immune escape mechanisms in cancer: basis for development and evolution of cancer immune checkpoint inhibitors[J]. Biology (Basel), 2023, 12(2): 218. doi:10.3390/biology12020218
|
[16] |
Scott EN, Gocher AM, Workman CJ, et al. Regulatory T cells: barriers of immune infiltration into the tumor microenvironment[J]. Front Immunol, 2021, 12: 702726. doi:10.3389/fimmu.2021.702726
|
[17] |
Joshi S, Sharabi A. Targeting myeloid-derived suppressor cells to enhance natural killer cell-based immunotherapy[J]. Pharmacol Ther, 2022, 235: 108114. doi:10.1016/j.pharmthera.2022.108114
|
[18] |
Ma B, Ran R, Liao HY, et al. The paradoxical role of matrix metalloproteinase-11 in cancer[J]. Biomed Pharmacother, 2021, 141: 111899. doi:10.1016/j.biopha.2021.111899
|
[19] |
Sutherland TE, Dyer DP, Allen JE. The extracellular matrix and the immune system: a mutually dependent relationship[J]. Science, 2023, 379(6633): eabp8964. doi:10.1126/science.abp8964
|
[20] |
Quintero-Fabián S, Arreola R, Becerril-Villanueva E, et al. Role of matrix metalloproteinases in angiogenesis and cancer[J]. Front Oncol, 2019, 9: 1370. doi:10.3389/fonc.2019.01370
|
[21] |
Cui SB. Analysis of a free boundary problem modeling tumor growth[J]. Acta Math Sin, 2005, 21(5): 1071-82. doi:10.1007/s10114-004-0483-3
|
[22] |
Ladyzhenskaya OA, Solonnikov VA, Ural'tseva NN. Linear and quasi-linear equations of parabolic type[M]. Providence: Am Math Soc, 1968.
|
[23] |
Friedman A, Lolas G. Analysis of a mathematical model of tumor lymphangiogenesis[J]. Math Models Methods Appl Sci, 2005, 15(1): 95-107. doi:10.1142/s0218202505003915
|
[24] |
Wei XM, Cui SB. Existence and uniqueness of global solutions for a mathematical model of antiangiogenesis in tumor growth[J]. Nonlinear Anal Real World Appl, 2008, 9(5): 1827-36. doi:10.1016/j.nonrwa.2007.05.013
|
[25] |
Wei XM, Guo CH. Global existence for a mathematical model of the immune response to cancer[J]. Nonlinear Anal Real World Appl, 2010, 11(5): 3903-11. doi:10.1016/j.nonrwa.2010.02.017
|
[26] |
王 术. Sobolev空间与偏微分方程引论[M]. 北京: 科学出版社, 2009.
|
[27] |
Lai XL, Friedman A. Combination therapy for melanoma with BRAF/MEK inhibitor and immune checkpoint inhibitor: a mathematical model[J]. BMC Syst Biol, 2017, 11(1): 70. doi:10.1186/s12918-017-0446-9
|
[28] |
Wahbi H, Ahmed E, Abalgaduir A, et al. Mathematical model of cancer with ordinary differential equations[J]. Contemp Math, 2024: 3517-34. doi:10.37256/cm.5320244593
|
[29] |
Orrell D, Mistry HB. A simple model of a growing tumour[J]. PeerJ, 2019, 7: e6983. doi:10.7717/peerj.6983
|
[30] |
Stinner C, Surulescu C, Uatay A. Global existence for a go-or-grow multiscale model for tumor invasion with therapy[J]. Math Models Methods Appl Sci, 2016, 26(11): 2163-201. doi:10.1142/s021820251640011x
|
[31] |
Mahlbacher GE, Reihmer KC, Frieboes HB. Mathematical modeling of tumor-immune cell interactions[J]. J Theor Biol, 2019, 469: 47-60. doi:10.1016/j.jtbi.2019.03.002
|
[32] |
王振友, 黄亚婷. ECM重塑下肿瘤淋巴管生成模型的定性分析与数值模拟[J]. 广东工业大学学报, 2024, 41(1): 11-8.
|