1 |
Truman JW. The evolution of insect metamorphosis[J]. Curr Biol, 2019, 29(23): R1252-68.
|
2 |
Telang A, Frame L, Brown MR. Larval feeding duration affects ecdysteroid levels and nutritional reserves regulating pupal commitment in the yellow fever mosquito Aedes aegypti (Diptera: Culicidae)[J]. J Exp Biol, 2007, 210(Pt 5): 854-64.
|
3 |
Jaramillo-O N, Fonseca-González I, Chaverra-Rodríguez D. Geometric morphometrics of nine field isolates of Aedes aegypti with different resistance levels to lambda-cyhalothrin and relative fitness of one artificially selected for resistance[J]. PLoS One, 2014, 9(5): e96379.
|
4 |
Murrell EG, Damal K, Lounibos LP, et al. Distributions of competing container mosquitoes depend on detritus types, nutrient ratios, and food availability[J]. Ann Entomol Soc Am, 2011, 104(4): 688-98.
|
5 |
MacKay AJ, Yan JY, Kim CH, et al. Larval diet and temperature alter mosquito immunity and development: using body size and developmental traits to track carry-over effects on longevity[J]. Parasit Vectors, 2023, 16(1): 434.
|
6 |
Qureshi A, Keen E, Brown G, et al. The size of larval rearing container modulates the effects of diet amount and larval density on larval development in Aedes aegypti [J]. PLoS One, 2023, 18(1): e0280736.
|
7 |
Gunathilaka N, Upulika H, Udayanga L, et al. Effect of larval nutritional regimes on morphometry and vectorial capacity of Aedes aegypti for dengue transmission[J]. Biomed Res Int, 2019, 2019: 3607342.
|
8 |
Macoris M, Andrighetti M, de Cássia K, et al. Standardization of bioassays for monitoring resistance to insecticides in Aedes aegypti [J]. Dengue Bulletin, 2005, 12(29):176-182.
|
9 |
WHO. Guidelines for laboratory and field testing of mosquito larvicides[M]. World Health Organization, 2005.
|
10 |
WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes[M]. World Health Organization, 2016.
|
11 |
袁思祎, 王 颖, 齐白钰, 等. 胡椒碱对白纹伊蚊幼虫的毒性作用及发育影响[J]. 热带医学杂志, 2024, 24(6): 783-7, 916.
|
12 |
Adhikari K, Khanikor B, Sarma R. Persistent susceptibility of Aedes aegypti to eugenol[J]. Sci Rep, 2022, 12(1): 2277.
|
13 |
Giatropoulos A, Koliopoulos G, Pantelakis PN, et al. Evaluating the sublethal effects of Origanum vulgare essential oil and carvacrol on the biological characteristics of Culex pipiens biotype molestus (Diptera: Culicidae)[J]. Insects, 2023, 14(4): 400.
|
14 |
WHO. Guidelines for testing mosquito adulticides for indoor residual spraying and treatment of mosquito nets[M]. World Health Organization, 2006.
|
15 |
Sasmita HI, Tu WC, Bong LJ, et al. Effects of larval diets and temperature regimes on life history traits, energy reserves and temperature tolerance of male Aedes aegypti (Diptera: Culicidae): optimizing rearing techniques for the sterile insect programmes[J]. Parasit Vectors, 2019, 12(1): 578.
|
16 |
Salim M, Kamran M, Khan I, et al. Effect of larval diets on the life table parameters of dengue mosquito, Aedes aegypti (L.) (Diptera: Culicidae) using age-stage two sex life table theory[J]. Sci Rep, 2023, 13: 11969.
|
17 |
Carvajal-Lago L, Ruiz-López MJ, Figuerola J, et al. Implications of diet on mosquito life history traits and pathogen transmission[J]. Environ Res, 2021, 195: 110893.
|
18 |
Chambers GM, Klowden MJ. Correlation of nutritional reserves with a critical weight for pupation in larval Aedes aegypti mosquitoes[J]. J Am Mosq Control Assoc, 1990, 6(3): 394-9.
|
19 |
Gilles JL, Lees RS, Soliban SM, et al. Density-dependent effects in experimental larval populations of Anopheles Arabiensis (Diptera: Culicidae) can be negative, neutral, or overcompensatory depending on density and diet levels[J]. J Med Entomol, 2011, 48(2): 296-304.
|
20 |
Puggioli A, Balestrino F, Damiens D, et al. Efficiency of three diets for larval development in mass rearing Aedes albopictus (Diptera: Culicidae)[J]. J Med Entomol, 2013, 50(4): 819-25.
|
21 |
Telang A, Qayum AA, Parker A, et al. Larval nutritional stress affects vector immune traits in adult yellow fever mosquito Aedes aegypti (Stegomyia aegypti)[J]. Med Vet Entomol, 2012, 26(3): 271-81.
|
22 |
Vantaux A, Lefèvre T, Cohuet A, et al. Larval nutritional stress affects vector life history traits and human malaria transmission[J]. Sci Rep, 2016, 6: 36778.
|
23 |
Gunathilaka PN, Uduwawala UU, Udayanga NL, et al. Determination of the efficiency of diets for larval development in mass rearing Aedes aegypti (Diptera: Culicidae)[J]. Bull Entomol Res, 2018, 108(5): 583-92.
|
24 |
Hodjati MH, Curtis CF. Effects of permethrin at different temperatures on pyrethroid-resistant and susceptible strains of Anopheles [J]. Med Vet Entomol, 1999, 13(4): 415-22.
|
25 |
Oliver SV, Brooke BD. The effect of larval nutritional deprivation on the life history and DDT resistance phenotype in laboratory strains of the malaria vector Anopheles Arabiensis [J]. Malar J, 2013, 12: 44.
|
26 |
Jacobs E, Chrissian C, Rankin-Turner S, et al. Cuticular profiling of insecticide resistant Aedes aegypti [J]. Sci Rep, 2023, 13(1): 10154.
|
27 |
Balabanidou V, Kefi M, Aivaliotis M, et al. Mosquitoes cloak their legs to resist insecticides[J]. Proc Biol Sci, 2019, 286(1907): 20191091.
|
28 |
WHO. Manual for monitoring insecticide resistance in mosquito vectors and selecting appropriate interventions. World Health Organization, 2024.
|
29 |
Zhang Y, Wang D, Shi WF, et al. Resistance to pyrethroids and the relationship between adult resistance and knockdown resistance (kdr) mutations in Aedes albopictus in dengue surveillance areas of Guizhou Province, China[J]. Sci Rep, 2024, 14(1): 12216.
|
30 |
Djègbè NDC, Da DF, Somé BM, et al. Anopheles aquatic development kinetic and adults' longevity through different seasons in laboratory and semi-field conditions in Burkina Faso[J]. Parasit Vectors, 2024, 17(1): 181.
|
31 |
Subahar R, Huang A, Wijaya RS, et al. First report on evaluation of commercial eugenol and piperine against Aedes aegypti L (Diptera: Culicidae) larvae: Mortality, detoxifying enzyme, and histopatho-logical changes in the midgut[J]. Parasitol Int, 2024, 98: 102813.
|
32 |
Damiens D, Benedict MQ, Wille M, et al. An inexpensive and effective larval diet for Anopheles Arabiensis (Diptera: Culicidae): eat like a horse, a bird, or a fish[J]? J Med Entomol, 2012, 49(5): 1001-11.
|
33 |
Nascimento DAS, Trindade FTT, Silva AAE. Dietary supplementation with vitamins and minerals improves larvae and adult rearing conditions of Anopheles darlingi (Diptera: Culicidae)[J]. J Med Entomol, 2021, 58(1): 71-8.
|
34 |
Benedict MQ, Hunt CM, Vella MG, et al. Pragmatic selection of larval mosquito diets for insectary rearing of Anopheles gambiae and Aedes aegypti [J]. PLoS One, 2020, 15(3): e0221838.
|