1 |
de Wit S, Dickinson A. Associative theories of goal-directed behaviour: a case for animal-human translational models[J]. Psychol Res, 2009, 73(4): 463-76.
|
2 |
Balleine BW, Dickinson A. Goal-directed instrumental action: contingency and incentive learning and their cortical substrates[J]. Neuropharmacology, 1998, 37(4/5): 407-19.
|
3 |
Balleine BW, Peak J, Matamales M, et al. The dorsomedial striatum: an optimal cellular environment for encoding and updating goal-directed learning[J]. Curr Opin Behav Sci, 2021, 41: 38-44.
|
4 |
van Wingerden M, van der Meij R, Kalenscher T, et al. Phase-amplitude coupling in rat orbitofrontal cortex discriminates between correct and incorrect decisions during associative learning[J]. J Neurosci, 2014, 34(2): 493-505.
|
5 |
Womelsdorf T, Vinck M, Stan Leung L, et al. Selective Theta-synchronization of choice-relevant information subserves goal-directed behavior[J]. Front Hum Neurosci, 2010, 4: 210.
|
6 |
Buzsáki G. Two-stage model of memory trace formation: a role for "noisy" brain states[J]. Neuroscience, 1989, 31(3): 551-70.
|
7 |
O'Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat[J]. Brain Res, 1971, 34(1): 171-5.
|
8 |
Speers LJ, Bilkey DK. Disorganization of oscillatory activity in animal models of schizophrenia[J]. Front Neural Circuits, 2021, 15: 741767.
|
9 |
Shimbo A, Izawa EI, Fujisawa S. Scalable representation of time in the hippocampus[J]. Sci Adv, 2021, 7(6): eabd7013.
|
10 |
Drieu C, Zugaro M. Hippocampal sequences during exploration: mechanisms and functions[J]. Front Cell Neurosci, 2019, 13: 232.
|
11 |
Iwasaki S, Sasaki T, Ikegaya Y. Hippocampal beta oscillations predict mouse object-location associative memory performance[J]. Hippocampus, 2021, 31(5): 503-11.
|
12 |
Leung LS, Gill RS, Shen B, et al. Cholinergic and behavior-dependent beta and gamma waves are coupled between olfactory bulb and hippocampus[J]. Hippocampus, 2024, 34(9): 464-90.
|
13 |
Naggar I, Stewart M, Orman R. High frequency oscillations in rat hippocampal slices: origin, frequency characteristics, and spread[J]. Front Neurol, 2020, 11: 326.
|
14 |
Kringelbach ML. The human orbitofrontal cortex: linking reward to hedonic experience[J]. Nat Rev Neurosci, 2005, 6(9): 691-702.
|
15 |
Hoover WB, Vertes RP. Projections of the medial orbital and ventral orbital cortex in the rat[J]. J Comp Neurol, 2011, 519(18): 3766-801.
|
16 |
Mar AC, Walker AL, Theobald DE, et al. Dissociable effects of lesions to orbitofrontal cortex subregions on impulsive choice in the rat[J]. J Neurosci, 2011, 31(17): 6398-404.
|
17 |
Rolls ET, Critchley HD, Mason R, et al. Orbitofrontal cortex neurons: role in olfactory and visual association learning[J]. J Neurophysiol, 1996, 75(5): 1970-81.
|
18 |
Stalnaker TA, Liu TL, Takahashi YK, et al. Orbitofrontal neurons signal reward predictions, not reward prediction errors[J]. Neurobiol Learn Mem, 2018, 153(pt b): 137-43.
|
19 |
Gardner MPH, Sanchez D, Conroy JC, et al. Processing in lateral orbitofrontal cortex is required to estimate subjective preference during initial, but not established, economic choice[J]. Neuron, 2020, 108(3): 526-37. e4.
|
20 |
Amodeo LR, McMurray MS, Roitman JD. Orbitofrontal cortex reflects changes in response-outcome contingencies during probabilistic reversal learning[J]. Neuroscience, 2017, 345: 27-37.
|
21 |
Rich EL, Wallis JD. Spatiotemporal dynamics of information encoding revealed in orbitofrontal high-gamma[J]. Nat Commun, 2017, 8(1): 1139.
|
22 |
Roullet F, Datiche F, Liénard F, et al. Learning-stage dependent Fos expression in the rat brain during acquisition of an olfactory discrimination task[J]. Behav Brain Res, 2005, 157(1): 127-37.
|
23 |
Thonnard D, Callaerts-Vegh Z, D'Hooge R. Effects of orbitofrontal cortex and ventral hippocampus disconnection on spatial reversal learning[J]. Neurosci Lett, 2021, 750: 135711.
|
24 |
Dupret D, O’Neill J, Pleydell-Bouverie B, et al. The reorganization and reactivation of hippocampal maps predict spatial memory performance[J]. Nat Neurosci, 2010, 13(8): 995-1002.
|
25 |
Voigts J, Newman JP, Wilson MA, et al. An easy-to-assemble, robust, and lightweight drive implant for chronic tetrode recordings in freely moving animals[J]. J Neural Eng, 2020, 17(2): 026044.
|
26 |
Buzsáki G. Large-scale recording of neuronal ensembles[J]. Nat Neurosci, 2004, 7(5): 446-51.
|
27 |
Young JJ, Shapiro ML. Dynamic coding of goal-directed paths by orbital prefrontal cortex[J]. J Neurosci, 2011, 31(16): 5989-6000.
|
28 |
Riceberg JS, Srinivasan A, Guise KG, et al. Hippocampal signals modify orbitofrontal representations to learn new paths[J]. Curr Biol, 2022, 32(15): 3407-13.e6.
|
29 |
Wikenheiser AM, Gardner MPH, Mueller LE, et al. Spatial representations in rat orbitofrontal cortex[J]. J Neurosci, 2021, 41(32): 6933-45.
|
30 |
Sharma D, Lupkin SM, McGinty VB. Orbitofrontal high-gamma reflects spike-dissociable value and decision mechanisms[J]. bioRxiv, 2024: 2024.04.02.587758.
|
31 |
Namboodiri VMK, Otis JM, van Heeswijk K, et al. Single-cell activity tracking reveals that orbitofrontal neurons acquire and maintain a long-term memory to guide behavioral adaptation[J]. Nat Neurosci, 2019, 22(7): 1110-21.
|
32 |
Jarzebowski P, Hay YA, Grewe BF, et al. Different encoding of reward location in dorsal and intermediate hippocampus[J]. Curr Biol, 2022, 32(4): 834-41.e5.
|
33 |
Tamura M, Spellman TJ, Rosen AM, et al. Hippocampal-prefrontal Theta-gamma coupling during performance of a spatial working memory task[J]. Nat Commun, 2017, 8(1): 2182.
|
34 |
Wang C, Furlong TM, Stratton PG, et al. Hippocampus-prefrontal coupling regulates recognition memory for novelty discrimination[J]. J Neurosci, 2021, 41(46): 9617-32.
|
35 |
Ramirez-Gordillo D, Bayer KU, Restrepo D. Hippocampal-prefrontal θ coupling develops as mice become proficient in associative odorant discrimination learning[J]. eneuro, 2022, 9(5): ENEURO.0259-22.2022.
|