南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (2): 422-436.doi: 10.12122/j.issn.1673-4254.2025.02.23

• • 上一篇    

基于分段反投影张量退化特征编码的牙科锥形束计算机断层扫描运动伪影校正

曾智雄1(), 王永波2, 林宗悦2, 边兆英1,3, 马建华1()   

  1. 1.南方医科大学生物医学工程学院,广东 广州 510515
    2.西安交通大学生命科学与技术学院,陕西 西安 710049
    3.南方医科大学广东省医学图像处理重点实验室,广东 广州 510515
  • 收稿日期:2024-10-15 出版日期:2025-02-20 发布日期:2025-03-03
  • 通讯作者: 马建华 E-mail:zxzeng@smu.edu.cn;jhma@smu.edu.cn
  • 作者简介:曾智雄,在读硕士研究生,E-mail: zxzeng@smu.edu.cn
  • 基金资助:
    国家自然科学基金(U21A6005);广州市科技计划项目(202206010148)

A segmented backprojection tensor degradation feature encoding model for motion artifacts correction in dental cone beam computed tomography

Zhixiong ZENG1(), Yongbo WANG2, Zongyue LIN2, Zhaoying BIAN1,3, Jianhua MA1()   

  1. 1.School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
    2.School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
    3.Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China
  • Received:2024-10-15 Online:2025-02-20 Published:2025-03-03
  • Contact: Jianhua MA E-mail:zxzeng@smu.edu.cn;jhma@smu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(U21A6005)

摘要:

目的 为了去除患者在牙科锥形束计算机断层扫描(CBCT)扫描过程中发生躯体运动导致的伪影,提升重建图像质量,提出一种基于分段反投影张量退化特征编码的运动伪影校正模型(SBP-MAC)。 方法 该模型由一个生成器和一个退化编码器构成。将分段有限角度重建的子图像堆叠成张量并作为模型输入;用退化编码器提取张量中空间变化的运动信息,自适应调制生成器的各级跳跃连接特征,从而指导模型校正不同运动波形导致的伪影;最后设计伪影一致性损失来简化生成器的学习任务。 结果 该模型能有效地去除运动伪影,提升重建图像质量。在仿真数据上的峰值信噪比提升了8.28%,结构相似度提升了2.29%,均方根误差降低了23.84%;在真实数据上的专家评分最高4.4221(5分制),与所有对比方法之间的评分差异具有统计学意义(P<0.05)。 结论 本文提出的SBP-MAC模型能够有效提取张量中空间变化的运动信息,实现从张量域到图像域的自适应伪影校正,提升牙科CBCT图像质量。

关键词: 运动伪影校正, 牙科锥形束计算机断层扫描, 分段反投影张量

Abstract:

Objective We propose a segmented backprojection tensor degradation feature encoding (SBP-MAC) model for motion artifact correction in dental cone beam computed tomography (CBCT) to improve the quality of the reconstructed images. Methods The proposed motion artifact correction model consists of a generator and a degradation encoder. The segmented limited-angle reconstructed sub-images are stacked into the tensors and used as the model input. A degradation encoder is used to extract spatially varying motion information in the tensor, and the generator's skip connection features are adaptively modulated to guide the model for correcting artifacts caused by different motion waveforms. The artifact consistency loss function was designed to simplify the learning task of the generator. Results The proposed model could effectively remove motion artifacts and improve the quality of the reconstructed images. For simulated data, the proposed model increased the peak signal-to-noise ratio by 8.28%, increased the structural similarity index measurement by 2.29%, and decreased the root mean square error by 23.84%. For real clinical data, the proposed model achieved the highest expert score of 4.4221 (against a 5-point scale), which was significantly higher than those of all the other comparison methods. Conclusion The SBP-MAC model can effectively extract spatially varying motion information in the tensors and achieve adaptive artifact correction from the tensor domain to the image domain to improve the quality of reconstructed dental CBCT images.

Key words: motion artifact correction, dental cone beam computed tomography, segmented backprojection tensor