1 |
Kaasalainen T, Ekholm M, Siiskonen T, et al. Dental cone beam CT: an updated review[J]. Phys Med, 2021, 88: 193-217.
|
2 |
Nemtoi A, Czink C, Haba D, et al. Cone beam CT: a current overview of devices[J]. Dentomaxillofac Radiol, 2013, 42(8): 20120443.
|
3 |
Spin-Neto R, Wenzel A. Patient movement and motion artefacts in cone beam computed tomography of the dentomaxillofacial region: a systematic literature review[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2016, 121(4): 425-33.
|
4 |
Hanzelka T, Dusek J, Ocasek F, et al. Movement of the patient and the cone beam computed tomography scanner: objectives and possible solutions[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2013, 116(6): 769-73.
|
5 |
Spin-Neto R, Costa C, Salgado DM, et al. Patient movement characteristics and the impact on CBCT image quality and interpretability[J]. Dentomaxillofac Radiol, 2018, 47(1): 20170216.
|
6 |
Weisenberger AG, Gleason SS, Goddard J, et al. A restraint-free small animal SPECT imaging system with motion tracking[J]. IEEE Trans Nucl Sci, 2005, 52(3): 638-44.
|
7 |
Herzog H, Tellmann L, Fulton R, et al. Motion artifact reduction on parametric PET images of neuroreceptor binding[J]. J Nucl Med, 2005, 46(6): 1059-65.
|
8 |
Kim JH, Nuyts J, Kyme A, et al. A rigid motion correction method for helical computed tomography (CT)[J]. Phys Med Biol, 2015, 60(5): 2047-73.
|
9 |
Kyme AZ, Se S, Meikle SR, et al. Markerless motion estimation for motion-compensated clinical brain imaging[J]. Phys Med Biol, 2018, 63(10): 105018.
|
10 |
Sisniega A, Stayman JW, Yorkston J, et al. Motion compensation in extremity cone-beam CT using a penalized image sharpness criterion[J]. Phys Med Biol, 2017, 62(9): 3712-34.
|
11 |
Maur S, Stsepankou D, Hesser J. Auto-calibration by locally consistent contours for dental CBCT[J]. Phys Med Biol, 2018, 63(21): 215018.
|
12 |
Huang H, Siewerdsen JH, Zbijewski W, et al. Reference-free learning-based similarity metric for motion compensation in cone-beam CT[J]. Phys Med Biol, 2022, 67(12): 10.1088/1361-6560/ac749a.
|
13 |
Hahn J, Bruder H, Rohkohl C, et al. Motion compensation in the region of the coronary arteries based on partial angle reconstructions from short-scan CT data[J]. Med Phys, 2017, 44(11): 5795-813.
|
14 |
Berger M, Xia Y, Aichinger W, et al. Motion compensation for cone-beam CT using Fourier consistency conditions[J]. Phys Med Biol, 2017, 62(17): 7181-215.
|
15 |
Preuhs A, Maier A, Manhart M, et al. Symmetry prior for epipolar consistency[J]. Int J Comput Assist Radiol Surg, 2019, 14(9): 1541-51.
|
16 |
Ouadah S, Jacobson M, Stayman JW, et al. Correction of patient motion in cone-beam CT using 3D-2D registration[J]. Phys Med Biol, 2017, 62(23): 8813-31.
|
17 |
Niebler S, Schömer E, Tjaden H, et al. Projection-based improvement of 3D reconstructions from motion-impaired dental cone beam CT data[J]. Med Phys, 2019, 46(10): 4470-80.
|
18 |
Hu ZL, Jiang CH, Zhang QY, et al. Wasserstein generative adversarial networks for motion artifact removal in dental CT imaging[C]//Medical Imaging 2019: Physics of Medical Imaging. February 16-21, 2019. San Diego, USA. SPIE, 2019: 1094836.
|
19 |
Su B, Wen YT, Liu YY, et al. A deep learning method for eliminating head motion artifacts in computed tomography[J]. Med Phys, 2022, 49(1): 411-9.
|
20 |
Ko Y, Moon S, Baek J, et al. Rigid and non-rigid motion artifact reduction in X-ray CT using attention module[J]. Med Image Anal, 2021, 67: 101883.
|
21 |
Spin-Neto R, Matzen LH, Schropp LW, et al. An ex vivo study of automated motion artefact correction and the impact on cone beam CT image quality and interpretability[J]. Dentomaxillofacial Radiol, 2018: 20180013.
|
22 |
Kim JH, Sun T, Alcheikh AR, et al. Correction for human head motion in helical X-ray CT[J]. Phys Med Biol, 2016, 61(4): 1416-38.
|
23 |
Li XH, Da Z, Liu B. A generic geometric calibration method for tomographic imaging systems with flat-panel detectors: a detailed implementation guide[J]. Med Phys, 2010, 37(7): 3844-54.
|
24 |
Li DS, Zhang Y, Cheung KC, et al. Learning degradation representations for image deblurring[C]//European Conference on Computer Vision. Cham: Springer, 2022: 736-753.
|
25 |
Park T, Liu MY, Wang TC, et al. Semantic image synthesis with spatially-adaptive normalization[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA. IEEE, 2019: 2332-41.
|
26 |
Mechrez R, Talmi I, Shama F, et al. Maintaining natural image statistics with the contextual loss[C]//Asian Conference on Computer Vision. Cham: Springer, 2019: 427-443.
|
27 |
Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015: 234-41.
|
28 |
Gulrajani I, Ahmed F, Arjovsky M, et al. Improved training of Wasserstein GANs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. December 4 ‑9, 2017, Long Beach, California, USA. ACM, 2017: 5769-79.
|
29 |
Chen LY, Lu X, Zhang J, et al. HINet: half instance normalization network for image restoration[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Nashville, TN, USA. IEEE, 2021: 182-92.
|
30 |
Zamir SW, Arora A, Khan S, et al. Restormer: efficient transformer for high-resolution image restoration[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, LA, USA. IEEE, 2022: 5718-29.
|
31 |
Sun T, Jacobs R, Pauwels R, et al. A motion correction approach for oral and maxillofacial cone-beam CT imaging[J]. Phys Med Biol, 2021, 66(12): 125008.
|
32 |
Wang ZH, Chen J, Hoi SCH. Deep learning for image super-resolution: a survey[J]. IEEE Trans Pattern Anal Mach Intell, 2021, 43(10): 3365-87.
|