南方医科大学学报 ›› 2024, Vol. 44 ›› Issue (10): 1887-1897.doi: 10.12122/j.issn.1673-4254.2024.10.07

• • 上一篇    

Adrb1-A187V突变短睡眠小鼠在不同饮食条件下的行为变化

宋梓萍1,2(), 韩磊2, 林卓超2, 时广森1,2()   

  1. 1.南方医科大学药学院,广东 广州 510515
    2.中科中山药物创新研究院,广东 中山 528400
  • 收稿日期:2024-05-18 出版日期:2024-10-20 发布日期:2024-10-31
  • 通讯作者: 时广森 E-mail:2321976315@qq.com;shiguangsen@zidd.ac.cn
  • 作者简介:宋梓萍,硕士,E-mail: 2321976315@qq.com
  • 基金资助:
    国家自然科学基金(82271526)

Behavioral changes of transgenic mice carrying Adrb1-A187V mutation with short sleep duration under different dietary conditions

Ziping SONG1,2(), Lei HAN2, Zhuochao LIN2, Guangsen SHI1,2()   

  1. 1.School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
    2.Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
  • Received:2024-05-18 Online:2024-10-20 Published:2024-10-31
  • Contact: Guangsen SHI E-mail:2321976315@qq.com;shiguangsen@zidd.ac.cn
  • Supported by:
    National Natural Science Foundation of China(82271526)

摘要:

目的 探究在限制性饮食和高脂饮食模式下,短睡眠Adrb1-A187V小鼠模型与其野生型小鼠行为活动的差异。 方法 将短睡眠基因小鼠分为常规饮食组、气味保留禁食组、完全禁食组、高脂饮食组。常规饮食组:小鼠代谢与行为监测系统中,Adrb1+/+ 小鼠25只和Adrb1+/m 小鼠26只。气味保留禁食组:小鼠代谢与行为监测系统中,Adrb1+/+小鼠17只,Adrb1+/m小鼠19只;EEG/EMG睡眠活动监测系统中,Adrb1+/+小鼠6只,Adrb1+/m小鼠6只。完全禁食组:小鼠代谢与行为监测系统中,Adrb1+/+小鼠6只,Adrb1+/m小鼠4~5只;EEG/EMG睡眠活动监测系统中,Adrb1 +/+小鼠6只,Adrb1+/m小鼠6只。高脂饮食组:小鼠代谢与行为监测系统中,Adrb1+/+小鼠6只,Adrb1+/m小鼠7只;EEG/EMG睡眠活动监测系统中,Adrb1+/+小鼠6只,Adrb1+/m小鼠6只。在两组小鼠颅骨上植入脑电/肌电电极,通过给予小鼠24 h气味保留禁食实验、完全禁食实验以及高脂饮食实验,检测其在不同进食模式下,小鼠如何改变行为活动以适应饮食环境的变化。 结果 在气味保留禁食实验中,Adrb1+/m 小鼠表现出更加稳定的运动水平的波动,活动相对较少(P<0.05),睡眠时间更长(P<0.01,P<0.05),有利于适应饥饿环境,具有更耐饿的特性;完全禁食实验中,Adrb1+/m 小鼠的夜间进水量更多(P<0.05),进水的生物节律性更好,表现出在进水方面出现的“少食多餐”。同时,非快速动眼睡眠(NREM)时长增加(P<0.01),可以帮助小鼠抵抗饥饿。高脂饮食实验中,Adrb1+/m 小鼠表现出更高的运动水平,表现为夜间站立次数和运动距离水平更高(P<0.0001),且快速动眼睡眠(REM)在白天增加(P<0.01)。 结论 Adrb1-A187V突变小鼠可更快速对环境变化做出反应,在限制性饮食条件中,通过增加睡眠减少能量消耗以维持能量稳态;在高脂饮食条件中,则保持更高的运动水平,与限制性饮食条件相反。

关键词: 短睡眠基因, 睡眠, 进食, 能量稳态, Adrb1-A187V基因突变

Abstract:

Objective To observe the effects of restricted and high-fat diets on behavioral changes of wild-type (Adrb1+/+) and transgenic mice carrying Adrb1-A187V mutation (Adrb1+/m) with short sleep durations. Methods Adrb1+/+ and Adrb1+/m C57BL/6 mice were randomized into normal chow group (25 Adrb1+/+ and 26 Adrb1+/m mice for behavioral monitoring), odor retention fasting group (17 Adrb1+/+ and 19 Adrb1+/m mice for behavioral monitoring; 6 Adrb1+/+ mice and 6 Adrb1+/m mice for EEG/EMG monitoring), absolute fasting group (6 Adrb1+/+ and 4-5 Adrb1+/m mice for behavioral monitoring; 6 Adrb1+/+ and 6 Adrb1+/m mice for EEG/EMG monitoring), and high-fat diet group (6 Adrb1+/+ and 7 Adrb1+/m mice for behavioral monitoring; 6 Adrb1+/+ and 6 Adrb1+/m mice for EEG/EMG monitoring). Electrodes for EEG and muscle activity monitoring were implanted on the skulls of the mice. After 24 h of odor retention fasting, absolute fasting, or high-fat feeding, the mice were observed for behavioral changes adapted to diet changes. Results In odor retention fasting experiment, Adrb1+/m mice exhibited more stable fluctuations of activities with mildly reduced movement and prolonged sleep duration, indicating enhanced starvation resistance. In absolute fasting experiment, Adrb1+/m mice showed significantly increased nighttime water intake, improved rhythmicity in water intake (frequent intakes in small amounts), and increased duration of non-rapid eye movement sleep (NREM). In the high-fat diet experiment, Adrb1+/m mice showed higher levels of activity with increased instances of nighttime rearing, longer movement distances, and increased rapid eye movement sleep during daytime. Conclusion Adrb1+/m mice can quickly respond to environmental changes and under restricted dietary conditions, they can conserve energy by increasing sleep to maintain energy homeostasis but show higher levels of activity under high-fat dietary conditions.

Key words: short sleep gene, sleep, feeding, energy homeostasis, Adrb1-A187V mutation