南方医科大学学报 ›› 2019, Vol. 39 ›› Issue (10): 1141-.doi: 10.12122/j.issn.1673-4254.2019.10.02

• • 上一篇    下一篇

阿司匹林抗人乳腺癌增殖的直接作用蛋白靶点的生物信息学分析

朱星枚,杨嘉妮,张恩户,乔炜,李学军   

  • 出版日期:2019-10-20 发布日期:2019-10-20

Bioinformatic analysis of direct protein targets of aspirin against human breast cancer proliferation

  • Online:2019-10-20 Published:2019-10-20

摘要: 目的基于生物信息学分析大量公共数据库,探讨阿司匹林抑制人乳腺癌细胞增殖的分子机制。方法利用Drug Bank 5.1.3搜索确定阿司匹林的直接靶点蛋白(DPTs),STRING在线构建阿司匹林DPTs的蛋白-蛋白相互作用(PPI)网络和信号通 路;使用cBio Portal研究人乳腺癌中DPTs基因突变,并利用OncoPrint可视化;从TCGA数据库下载乳腺癌与正常组织中的转 录组数据,利用DECenter分析差异过表达基因,对STRING分析得到的DPTs相互关联基因与TCGA中的差异过表达基因求交 集,确认阿司匹林抑制人乳腺癌细胞增殖的潜在靶点,并利用Gene Ontology进行GO功能富集分析。最终通过蛋白免疫印迹 实验验证阿司匹林抑制人乳腺癌细胞增殖的潜在靶点。结果搜索Drug Bank 5.1.3确定了11个阿司匹林DPTs,KEGG通路富 集表明其中6个DPTs(EDNRA,IKBKB,NFKB2,NFKBIA,PTGS2和TP53)与癌症发生发展有关。通过分析TCGA数据库中 乳腺癌与正常组织中的转录组数据获得10220个过表达差异基因,与STRING分析得到的6个阿司匹林DPTs的相互关联基因 求交集,发现4个基因(CDC25C,TPX2,CDC20,PLK1)可能是阿司匹林抑制人乳腺癌细胞增殖的潜在靶点,其基因功能主要富 集于细胞周期与细胞分裂。蛋白免疫印迹实验结果显示:阿司匹林可以降低人乳腺癌细胞中CDC25C,TPX2,CDC20,PLK1的 蛋白表达。结论CDC25C,TPX2,CDC20和PLK1可能是阿司匹林抑制人乳腺癌细胞增殖的潜在靶点,其可能通过影响细胞周 期和细胞分裂发挥抗肿瘤增殖作用。

Abstract: Objective To explore the molecular mechanism underlying the inhibitory effects of aspirin against human breast cancer cell proliferation through bioinformatics analysis. Methods Drug Bank 5.1.3 was searched to identify direct protein targets (DPTs) of aspirin, and the protein-protein interaction (PPI) network of the DPTs was constructed online using STRING and the signaling pathways involved were identified. The genetic alterations of 6 DPTs associated with human breast cancer was analyzed and visualized by cBio Portal and OncoPrint, respectively. The transcriptomic data of breast cancer and normal tissues were downloaded from TCGA database, and the overexpressed genes were analyzed by DECenter. The intersection between the genes associated with the DPTs obtained by STRING analysis and the differentially over-expressed genes in TCGA was determined to confirm the candidate DPTs as a potential target of aspirin, and GO functional enrichment analysis was performed using Gene Ontology. The potential targets of aspirin against the proliferation of human breast cancer cells were verified by Western blotting. Results Eleven DPTs of aspirin were identified. KEGG pathway enrichment indicated that 6 genes (EDNRA, IKBKB, NFKB2, NFKBIA, PTGS2 and TP53) were associated with the occurrence and development of cancer. A total of 10 220 differentially expressed genes were identified from the TCGA database, and among them 4 genes (CDC25C, TPX2, CDC20, PLK1) were found to be the potential targets for aspirin. These genes were involved mostly in the regulation of cell cycle and cell division. Western blotting showed that aspirin could down-regulate the expression levels of several pivotal proteins that regulated cell cycle and cell division, including CDC25C, TPX2, CDC20 and PLK1. Conclusion CDC25C, TPX2, CDC20 and PLK1 may be potential targets for aspirin to inhibit the proliferation of human breast cancer cells, by affecting the progress of cell cycle and cell division.