南方医科大学学报 ›› 2018, Vol. 38 ›› Issue (11): 1288-.doi: 10.12122/j.issn.1673-4254.2018.11.02

• • 上一篇    下一篇

线粒体乙醛脱氢酶2通过下调CaN-NFAT3信号通路拮抗高糖引起的乳鼠心肌细胞损伤

郭建路,康品方,朱磊,孙硕,陶敏,张恒,唐碧   

  • 出版日期:2018-11-20 发布日期:2018-11-20

Mitochondrial aldehyde dehydrogenase 2 protects against high glucose-induced injury in neonatal rat cardiomyocytes by regulating CaN-NFAT3 signaling pathway

  • Online:2018-11-20 Published:2018-11-20

摘要: 目的探讨钙调神经磷酸酶(CaN)-活化的T细胞核因子(NFAT)3通路是否介导乙醛脱氢酶(ALDH)2对高糖处理的乳鼠 心室肌细胞的作用。方法无菌条件下取出生3 d内SD大鼠乳鼠心脏,心尖部剪碎并用胰蛋白酶和胶原酶2混合酶消化成单个 细胞,经差速贴壁后并在培养液中加入5-Brdu进行培养,当其生长呈融合状态时对心室肌细胞进行处理。应用免疫荧光检测培 养的乳鼠心肌细胞内α-SA蛋白以此鉴定原代培养心室肌细胞纯度;实验涉及如下分组:5.5 mmol/L糖对照组(M)、30 mmol/L 高糖组(MH)、30 mmol/L 高糖加乙醛脱氢酶2 激动剂(Alda-1)组(MHA)、30 mmol/L 高糖加乙醛脱氢酶2 抑制剂(Daidzin)组 (MHD)、30 mmol/L高糖加乙醛脱氢酶2激动剂(Alda-1)和NFAT3抑制剂(11R-VIVIT)组(MHAV);荧光探针检测细胞内钙离 子浓度;ELISA测定细胞内CaN含量;Western blot检测ALDH2、CaN、NFAT3蛋白表达。结果与M组相比,MH组ALDH2蛋 白表达降低(P<0.05),CaN蛋白表达增高(P<0.05)、NFAT3蛋白表达以及细胞内CaN含量、Ca2+浓度均增高(P<0.01);与MH组 相比,MHA组Ca2+浓度降低(P<0.05)、细胞内CaN含量降低(P<0.01)、CaN蛋白和NFAT3蛋白表达降低(P<0.05)、ALDH2蛋白 表达增加(P<0.05),MHD组Ca2+浓度升高(P<0.01)、细胞内CaN含量升高(P<0.05);与MHA组相比,MHAV组的ALDH2蛋白 表达量无明显变化(P>0.05),NFAT3蛋白表达量降低(P<0.05)。结论线粒体ALDH2对高糖诱导的乳鼠心肌细胞起保护作用, 其机制可能与ALDH2对Ca2+-CaN-NFAT3信号通路的负调节作用有关。

Abstract: Objective To investigate whether CaN-NFAT3 pathway mediates the protective effects of aldehyde dehydrogenase (ALDH) 2 in high glucose-treated neonatal rat ventricular myocytes. Methods The ventricular myocytes were isolated from the heart of neonatal (within 3 days) SD rats by enzyme digestion and cultured in the presence of 5-Brdu. After reaching confluence, the cultured ventricular myocytes were identified using immunofluorescence assay for α-SA protein. The cells were then cultured in either normal (5 mmol/L) or high glucose (30 mmol/L) medium in the presence of ALDH2 agonist Alda-1, ALDH 2 inhibitor Daidzin, or Alda-1 and NFAT3 inhibitor (11R-VIVIT). Fluorescent probe and ELISA were used to detect intracellular Ca2+ concentration and CaN content, respectively; ALDH2, CaN and NFAT3 protein expressions in the cells were detected using Western blotting. Results Compared with cells cultured in normal glucose, the cells exposed to high glucose showed a significantly decreased expression of ALDH2 protein (P<0.05) and increased expressions of CaN (P<0.05) and NFAT3 proteins with also increased intracellular CaN and Ca2 + concentrations (P<0.01). Alda-1 treatment significantly lowered Ca2+ concentration (P<0.05), intracellular CaN content (P<0.01), and CaN and NFAT3 protein expressions (P<0.05), and increased ALDH2 protein expression (P<0.05) in high glucose- exposed cells; Daidzin treatment significantly increased Ca2 + concentration (P<0.01) and intracellular CaN content (P<0.05) in the exposed cells. Compared with Alda-1 alone, treatment of the high glucose-exposed cells with both Alda-1 and 11R-VIVIT did not produce significant changes in the expression of ALDH2 protein (P>0.05) but significantly reduced the expression of NFAT3 protein (P<0.05). Conclusion Mitochondrial ALDH2 protects neonatal rat cardiomyocytes against high glucose-induced injury possibly by negatively regulating Ca2+-CaNNFAT3 signaling pathway.