文章快速检索     高级检索
  南方医科大学学报  2018, Vol. 38Issue (11): 1288-1293  DOI: 10.12122/j.issn.1673-4254.2018.11.02.
0

引用本文 [复制中英文]

郭建路, 康品方, 朱磊, 孙硕, 陶敏, 张恒, 唐碧. 线粒体乙醛脱氢酶2通过下调CaN-NFAT3信号通路拮抗高糖引起的乳鼠心肌细胞损伤[J]. 南方医科大学学报, 2018, 38(11): 1288-1293. DOI: 10.12122/j.issn.1673-4254.2018.11.02.
GUO Jianlu, KANG Pinfang, ZHU Lei, SUN Shuo, TAO Min, ZHANG Heng, TANG Bi. Mitochondrial aldehyde dehydrogenase 2 protects against high glucose-induced injury in neonatal rat cardiomyocytes by regulating CaN-NFAT3 signaling pathway[J]. Journal of Southern Medical University, 2018, 38(11): 1288-1293. DOI: 10.12122/j.issn.1673-4254.2018.11.02.

基金项目

国家自然科学基金(81770046,81550036);安徽省教育厅重大项目(KJ2018ZD023);高校学科(专业)拔尖人才学术资助重点项目(gxbjZD2016072);蚌埠医学院研究生创新课题(Byycxz1715)

作者简介

郭建路,硕士研究生,E-mail:guojianlu2016@163.com

通信作者

唐碧,博士,副教授,硕士生导师,E-mail:bitang2000@163.com

文章历史

收稿日期:2018-08-15
线粒体乙醛脱氢酶2通过下调CaN-NFAT3信号通路拮抗高糖引起的乳鼠心肌细胞损伤
郭建路 1, 康品方 1, 朱磊 1, 孙硕 1, 陶敏 2, 张恒 1, 唐碧 1     
1. 蚌埠医学院第一附属医院心血管科,安徽 蚌埠 233004;
2. 无锡市惠山区人民医院,江苏 无锡 214100
摘要: 目的 探讨钙调神经磷酸酶(CaN)-活化的T细胞核因子(NFAT)3通路是否介导乙醛脱氢酶(ALDH)2对高糖处理的乳鼠心室肌细胞的作用。方法 无菌条件下取出生3 d内SD大鼠乳鼠心脏,心尖部剪碎并用胰蛋白酶和胶原酶2混合酶消化成单个细胞,经差速贴壁后并在培养液中加入5-Brdu进行培养,当其生长呈融合状态时对心室肌细胞进行处理。应用免疫荧光检测培养的乳鼠心肌细胞内α-SA蛋白以此鉴定原代培养心室肌细胞纯度;实验涉及如下分组:5.5 mmol/L糖对照组(M)、30 mmol/L高糖组(MH)、30 mmol/L高糖加乙醛脱氢酶2激动剂(Alda-1)组(MHA)、30 mmol/L高糖加乙醛脱氢酶2抑制剂(Daidzin)组(MHD)、30 mmol/L高糖加乙醛脱氢酶2激动剂(Alda-1)和NFAT3抑制剂(11R-VIVIT)组(MHAV);荧光探针检测细胞内钙离子浓度;ELISA测定细胞内CaN含量;Western blot检测ALDH2、CaN、NFAT3蛋白表达。结果 与M组相比,MH组ALDH2蛋白表达降低(P < 0.05),CaN蛋白表达增高(P < 0.05)、NFAT3蛋白表达以及细胞内CaN含量、Ca2+浓度均增高(P < 0.01);与MH组相比,MHA组Ca2+浓度降低(P < 0.05)、细胞内CaN含量降低(P < 0.01)、CaN蛋白和NFAT3蛋白表达降低(P < 0.05)、ALDH2蛋白表达增加(P < 0.05),MHD组Ca2+浓度升高(P < 0.01)、细胞内CaN含量升高(P < 0.05);与MHA组相比,MHAV组的ALDH2蛋白表达量无明显变化(P>0.05),NFAT3蛋白表达量降低(P < 0.05)。结论 线粒体ALDH2对高糖诱导的乳鼠心肌细胞起保护作用,其机制可能与ALDH2对Ca2+-CaN-NFAT3信号通路的负调节作用有关。
关键词: 线粒体乙醛脱氢酶2    高糖    钙调神经磷酸酶    活化T细胞核因子3    
Mitochondrial aldehyde dehydrogenase 2 protects against high glucose-induced injury in neonatal rat cardiomyocytes by regulating CaN-NFAT3 signaling pathway
GUO Jianlu1, KANG Pinfang1, ZHU Lei1, SUN Shuo1, TAO Min2, ZHANG Heng1, TANG Bi1     
1. Department of Cardiology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China;
2. Department of Cardiology, Huishan District People's Hospital, Wuxi 214100, China
Supported by National Natural Science Foundation of China (81770046, 81550036)
Abstract: Objective To investigate whether CaN-NFAT3 pathway mediates the protective effects of aldehyde dehydrogenase (ALDH) 2 in high glucose-treated neonatal rat ventricular myocytes. Methods The ventricular myocytes were isolated from the heart of neonatal (within 3 days) SD rats by enzyme digestion and cultured in the presence of 5-Brdu. After reaching confluence, the cultured ventricular myocytes were identified using immunofluorescence assay for α-SA protein. The cells were then cultured in either normal (5 mmol/L) or high glucose (30 mmol/L) medium in the presence of ALDH2 agonist Alda-1, ALDH 2 inhibitor Daidzin, or Alda-1 and NFAT3 inhibitor (11R-VIVIT). Fluorescent probe and ELISA were used to detect intracellular Ca2+ concentration and CaN content, respectively; ALDH2, CaN and NFAT3 protein expressions in the cells were detected using Western blotting. Results Compared with cells cultured in normal glucose, the cells exposed to high glucose showed a significantly decreased expression of ALDH2 protein (P < 0.05) and increased expressions of CaN (P < 0.05) and NFAT3 proteins with also increased intracellular CaN and Ca2+ concentrations (P < 0.01). Alda-1 treatment significantly lowered Ca2+ concentration (P < 0.05), intracellular CaN content (P < 0.01), and CaN and NFAT3 protein expressions (P < 0.05), and increased ALDH2 protein expression (P < 0.05) in high glucose- exposed cells; Daidzin treatment significantly increased Ca2+ concentration (P < 0.01) and intracellular CaN content (P < 0.05) in the exposed cells. Compared with Alda-1 alone, treatment of the high glucose-exposed cells with both Alda-1 and 11R-VIVIT did not produce significant changes in the expression of ALDH2 protein (P>0.05) but significantly reduced the expression of NFAT3 protein (P < 0.05). Conclusion Mitochondrial ALDH2 protects neonatal rat cardiomyocytes against high glucose-induced injury possibly by negatively regulating Ca2+-CaN-NFAT3 signaling pathway.
Keywords: mitochondrial acetaldehyde dehydrogenase 2    high glucose    calcineurin    activated T cell nuclear factor 3    

糖尿病心肌病是糖尿病患者最为严重的并发症之一,同时也是糖尿病患者主要死亡原因。高血糖致心肌病变的主要特点是以心肌结构改变为主[1-2],从而导致心力衰竭,并有证据表明糖尿病是致射血分数保留性心衰的主要原因之一[3]。因此对高糖环境对心肌细胞损伤的机制研究具有重要意义。游离钙离子作为第二信号广泛参与细胞生理活动的调节,其参与的心脏信号传导是十分复杂的,影响着心脏内多种信号通路的传导[4]。高糖可以通过钙库操纵的的钙离子内流(SOCE)使细胞内钙离子浓度升高[5],当心肌细胞长期受高糖环境刺激时,高糖可通过G蛋白偶联受体途径和受体酪氨酸激酶途径使细胞内三磷酸肌醇(IP3)浓度增加[6],IP3首先作用于位于细胞内钙库(内质网)上基质相互作用分子(STIM)使钙库内钙离子释放进入胞浆,当钙库内钙离子清空后,STIM寡聚体化后转移到位于细胞膜ORAI和TRPC蛋白附近,激活ORAI和TRPC通道介导的钙离子内流[7]。胞浆内浓度升高的钙离子可过度活化钙调神经磷酸酶(CaN)。CaN是迄今发现唯一一种受Ca2+调节的丝氨酸/苏氨酸蛋白磷酸酶, 在心脏表达的CaN的活性只与CaNAβ相关[8],CaN使活化的T细胞核因子(NFAT)去磷酸化激活,活化的NFAT蛋白能在核内保持长时间的活化状态[9]。NFAT3作为CaN/NFAT3信号通路的下游分子最终决定了相关目的基因的表达[10-11],使用钙调神经磷酸酶抑制剂证明NFAT3的入核能被显著抑制,这一发现证实CaN调控着NFAT3的激活入核[12]。研究表明,Ca2+-CaN-NFAT3信号通路在心血管疾病发病过程中有着重要的作用,其在心肌肥大和心肌纤维化等过程都有参与[13-15],在高糖刺激下Ca2+- CaN-NFAT3作为心肌肥大信号被激活并参与相关炎症因子的调控[16]

线粒体乙醛脱氢酶2(ALDH2)是乙醛脱氢酶家族成员之一,是一种位于线粒体内重要的醛类氧化酶,不仅是体内重要的氧化应激分子,对细胞凋亡也具有抑制作用。研究证实,ALDH2对心血管系统的保护作用不仅在单纯心血管疾病方面[17-21]。在糖尿病大鼠模型中,通过低浓度酒精激活ALDH2,后者可以在大鼠心肌损伤中起保护作用[22]。但是,激活ALDH2对抗高糖引起的心肌细胞损伤,是否通过下调Ca2+-CaN-NFAT3信号通路活性实现的目前尚未见报道,本研究探讨了高糖处理的乳鼠心肌细胞中ALDH2对Ca2+-CaN-NFAT3信号通路影响及其可能机制。

1 材料和方法 1.1 动物和试剂

SD大鼠由蚌埠医学院实验动物中心提供且符合动物伦理;胰酶消化液(碧云天);胶原酶2(索莱宝);Hanks液(碧云天);胎牛血清(四季青);DMEM低糖、高糖培养基(HyClone);Alda-1(SML0462, Sigma-Aldrich);11R-VIVIT(TOCRIS);钙调神经磷酸酶酶联免疫吸附试剂盒(上海酶联);钙离子荧光探针Fluo-3 AM(碧云天);乙醛脱氢酶2抗体、钙调神经磷酸抗体购自abcam;活化T细胞核因子-3抗体(CST);β-actin购自Biosharp;DNA酶Ⅰ、5-Brdu(索莱宝);BCA试剂盒(碧云天)。

1.2 方法 1.2.1 心肌细胞原代培养

出生3 d内乳鼠取心脏心尖部剪碎后经混合酶消化成单个细胞,用含10%胎牛血清的DMEM低糖培养基接种于培养皿中,在5% CO2,饱和湿度,37 ℃培养箱培养,在培养1.5 h后取出培养皿中培养液离心重悬后接种于新培养皿中并且再加入5-Brdu继续培养,此时培养的细胞则为较高纯度心肌细胞可进行实验。

1.2.2 心肌细胞鉴定

用免疫荧光对培养心肌细胞进行鉴定。将培养皿中心肌细胞用胰酶消化后取少量细胞接种于6孔板中,剩余细胞重新接种于培养皿中,待6孔板中细胞完全贴壁后进行实验。先用PBS清洗1 min/3次,4%多聚甲醛室温固定细胞15 min,PBS清洗5 min/3次;然后用0.1% TritonX-100对细胞进行打孔并放置培养箱中30 min,PBS清洗5 min/3次;用5% BSA封闭30 min并且PBS清洗5 min/3次后用1% BSA稀释的抗α-横纹肌肌动蛋白一抗(α-Sarcomeric Actin, α-SA, 1: 200,武汉博士德)孵育心肌细胞4 ℃过夜;次日PBS清洗5 min/3次后用含羊抗小鼠荧光标记二抗(1: 200,武汉博士德)孵育细胞1 h;PBS清洗后用DAPI(ZSGB,北京)进行核染;避光条件下用荧光显微镜观察。

1.2.3 实验分组

实验共有以下分组:5.5 mmol/L糖对照组(M)、30 mmol/L高糖组(MH)、30 mmol/L高糖加乙醛脱氢酶2激动剂(Alda-1)组(MHA)、30 mmol/L高糖加乙醛脱氢酶2抑制剂(Daidzin)组(MHD)、30 mmol/L高糖加乙醛脱氢酶2激动剂(Alda-1)和NFAT3抑制剂(11R-VIVIT)组(MHAV)。

1.2.4 细胞内钙离子浓度测定

Fluo-3 AM用无血清培养基配成2 μmol/L;弃去原细胞培养基,用PBS清洗细胞后给予2 μmol/L的Fluo-3于37 ℃,5% CO2孵育30 min;弃去Fluo-3,PBS洗涤细胞2次后加培养基适量后荧光显微镜检测。

1.2.5 Western blot检测CaN、ALDH2、NFAT3蛋白表达情况

处理后细胞PBS洗涤1 min/3次后加适量胰酶消化细胞1 min,用含10%血清培养基终止消化,将混合液离心后PBS清洗再次离心,加入适量全细胞裂解液及PMSF裂解1 h后12 000 r/min 15 min离心,取上清。按照BCA试剂盒说明测蛋白浓度,制备10% SDS-PAGE分离胶和5%浓缩胶,每孔上样60 μg。用60 V恒压浓缩胶电泳30 min,恒压90 V分离胶电泳90 min。将凝胶中已分离的蛋白质恒流200 mA 150 min电转到PVDF膜上;5%脱脂奶粉室温封闭条带2 h;用TBST稀释的一抗孵育条带4 ℃过夜,TBST洗涤条带4次,5 min/次;将洗涤后条带放入TBST稀释的二抗中37 ℃水浴1 h,TBST清洗条带4次,10 min/次。ECL发光法显影。

1.2.6 细胞内CaN浓度测定

从室温平衡20 min后的铝箔袋中取出板条,分别设置空白、标准、样品孔,除空白孔外各孔分别加入50 μL不同浓度标准品和样品。标准孔和样品孔每孔加入辣根过氧化物酶(HRP)标记的检测抗体,用封板膜封住反应孔,37 ℃恒温箱60 min。弃去液体,吸水纸吸干,每孔加满洗涤液,静置1 min,甩去洗涤液,吸水纸吸干,重复5次。每孔加入底物A、B个50 μL,37 ℃避光孵育15 min。每孔加入终止液50 μL,15 min内,测定各孔A450 nm波长。

1.3 统计学处理

数据采用均数±标准差表示,采用GraphPad,prism 6进行统计学分析,多组均数间比较采用单因素方差分析,各组均数比较采用HolmSidak(recommended)校正的t检验,以P < 0.05为差异有统计学意义。

2 结果 2.1 原代心肌细胞培养免疫荧光鉴定结果

通过差速贴壁结合5-Brdu得到纯度较高的心肌细胞,并且通过对特异性表达于心肌细胞和骨骼肌细胞中α-横纹肌肌动蛋白进行免疫荧光染色后,心肌α-SA抗原免疫荧光呈阳性反应,为绿色,位于细胞浆内,DAPI细胞核染色为蓝色,Merged为α-SA和DAPI合成结果(图 1)。

图 1 心肌细胞免疫荧光鉴定 Figure 1 Immunefluorescence identification of cardiomyocytes (Original magnification: ×100).
2.2 细胞内各组Ca2+活性测定结果

使用Image-J软件进行图像分析,结果显示:各组细胞不同条件分别培养48 h后,与正常组相比,高糖组平均Ca2+荧光密度值明显增高(P < 0.01),与MH相比,MHA组荧光密度值显著降低(P < 0.01),MHD组荧光值进一步升高(P < 0.01,图 2)。

图 2 荧光探针检测各组[Ca2+]活性测定结果和各组[Ca2+]荧光染色观察 Figure 2 Determination of [Ca2+] level and fluorescence staining for detecting [Ca2+] in each group. A: Quantitative analysis of the mean fluorescence density of [Ca2+] in each group (Mean ± SD, n=5). *P < 0.01 vs MH, ***P < 0.01 vs MH; **P < 0.05 vs MH; B: Fluorescence density of [Ca2+] in primary cardiomyocytes with different treatments (×100).
2.3 免疫印迹检测CaN、ALDH2、NFAT3蛋白表达情况

通过Image-J分析曝光后条带灰度值显示:使用Image-J软件进行图像分析,各组细胞不同条件分别培养48 h后,与MH组相比,MHA组ALDH2表达升高(P < 0.05),而CaN、NFAT3表达相应减弱(P < 0.05);与MHA相比,MHAV组ALDH2蛋白表达差异无统计学意义(P>0.05),NFAT3蛋白表达明显降低(P < 0.05,图 3)。

图 3 Western blotting检测各组ALDH2、CaNAβ、NFAT3蛋白表达 Figure 3 Western blotting for detecting ALDH2, CaNAβ, and NFAT3 protein levels in primary cultures of cardiomyocytes in each group (Mean±SD, n=3). A: Western blotting of ALDH2 and β-actin; B: ALDH2 protein levels normalized by β-actin (*P < 0.05 vs group MH; **P>0.05 vs MHA); C: Western blotting of CaNAβ and β-actin; D: CaNAβ protein levels normalized by β-actin (*P < 0.05 vs group MH); E: Western blotting of NFAT3 and β-actin; F: NFAT3 protein levels normalized by β-actin levels (*P < 0.01 vs MH; **P < 0.05 vs MH; ***P < 0.05 vs MHA).
2.4 细胞内CaN浓度测定结果

各组细胞分组如前,在不同条件下处理48 h结果显示:M组CaN浓度最低,在高糖诱导下细胞内CaN浓度显著升高(P < 0.01),给予Alda-1处理的MHA组细胞内CaN浓度有所降低(P < 0.01),而当单独给予Daidzin后CaN浓度较MH组升高显著(P < 0.05,图 4)。

图 4 ELISA检测不同处理组细胞内CaN浓度 Figure 4 Concentration of CaN in primary cardiomyocytes with different treatments detected by ELISA (Mean±SD, n=3). *P < 0.01 vs MH, **P < 0.01 vs MH; ***P < 0.05 vs MH.
3 讨论

机体内长期高糖环境是导致心肌损伤重要因素,但具体机制尚不明确,因此本研究通过高糖诱导原代培养的SD大鼠乳鼠心肌细胞来探索高糖致心肌损伤可能机制。本实验发现高糖环境下心肌细胞内钙离子浓度、细胞内CaN浓度、CaNAβ和NFAT3蛋白水平都显著增加,这些结果进一步验证高糖可激活Ca2+-CaNAβ-NFAT3信号通路。

研究发现[5]原代培养的人脐静脉内皮细胞经高糖处理后,钙库操纵的钙离子内流(SOCE)相关蛋白活性升高,进而导致细胞内游离钙离子浓度升高,也有研究发现了类似的结果[23-24]。细胞内升高的钙离子浓度可使细胞内CaN浓度、CaN和NFAT3蛋白表达量均明显升高[22]。这些结果与我们的研究结果相符。以上说明CaN/NFAT3信号通路在介导高糖诱导的心肌损伤过程中发挥着重要作用,其机制可能是高糖环境引起心肌细胞内SOCE活性升高,引起细胞内游离钙离子浓度升高,导致依赖于细胞内Ca2+的CaN活化。使用钙调神经磷酸酶抑制剂证明NFAT3的入核能被显著抑制,这一发现证实CaN调控着NFAT3的激活入核[12]。活化的NFAT3去磷酸化入核调控多种参与心肌肥大和纤维化基因的表达[8, 23],以上研究提示了Ca2+-CaN-NFAT3信号通路介导了高糖诱导的心肌肥大及纤维化等病理过程。

既往研究发现ALDH2可对抗糖尿病诱导的心肌细胞损伤[19, 22, 26],ALDH2抗细胞损伤可能与其可清除细胞内产生的乙醛和氧自由基密切相关[27-28],Pan等[29]在培养的心肌细胞中发现了ALDH2的这种保护作用,我们研究发现ALDH2对于高糖诱导的心肌纤维化也具有一定的逆转作用[30],但ALDH2能否调控Ca2+-CaNNFAT3活性从而拮抗高糖引起的心肌细胞损伤目前未见报道。我们探讨了ALDH2与Ca2+-CaN-NFAT3通路的关系。首先我们使用高糖和乙醛脱氢酶2激动剂Alda-1共处理原代心肌细胞。结果显示ALDH2能够显著抑制高糖对钙离子浓度、CaNAβ浓度的上调作用。当进一步用高糖和ALDH2抑制剂Daidzin共处理原代心肌细胞,结果发现钙离子浓度、CaNAβ浓度较仅用高糖处理显著增高。此外,我们还应用了高糖、Alda-1和NFAT3抑制剂11R-VIVIT共处理心肌细胞,结果显示NFAT3蛋白表达水平较高糖与Alda-1共处理显著降低,而CaNAβ蛋白表达量却有所增高,但并无统计学意义。我们的研究结果表明高糖可激活心肌细胞内Ca2+-CaN-NFAT3信号通路,并推测该过程可被ALDH2有效拮抗。

因此,为了进一步验证上述猜测,我们通过检测ALDH2蛋白表达发现, 各组ALDH2蛋白表达与各组CaNAβ、NFAT3蛋白表达变化趋势相反,并且与各组细胞钙离子浓度和CaN浓度变化也呈相反趋势。在使用NFAT3特异性抑制剂11R-VIVIT后发现ALDH2蛋白表达量与无11R-VIVIT存在条件下并无明显差异,这些结果进一步证实了ALDH2可能作为Ca2+-CaN-NFAT3信号通路上游分子发挥调控作用。

综上所述,ALDH2可能通过下调Ca2+-CaN-NFAT3通路活性拮抗高糖引起乳鼠心肌细胞损伤。

参考文献
[1]
Aydemir M, Ozturk N, Dogan S, et al. Sodium tungstate administration ameliorated diabetes-induced electrical and contractile remodeling of rat heart without normalization of hyperglycemia[J]. Biol Trace Elem Res, 2012, 148(2): 216-23. DOI: 10.1007/s12011-012-9350-8.
[2]
Thackeray JT, Radziuk J, Harper ME, et al. Sympathetic nervous dysregulation in the absence of systolic left ventricular dysfunctionin a rat model of insulin resistance with hyperglycemia[J]. Cardiovasc Diabetol, 2011, 10(8): 75.
[3]
Pan G, Munukutla S, Kar A, et al. Type-2 diabetic aldehyde dehydrogenase 2 mutant mice (ALDH 2*2) exhibiting heart failure with preserved ejection fraction phenotype can be determined by exercise stress echocardiography[J]. PLoS One, 2018, 13(4): e0195796. DOI: 10.1371/journal.pone.0195796.
[4]
Dewenter M, von der Lieth A, Katus HA. Calcium signaling and transcriptional regulation in cardiomyocytes[J]. Circ Res, 2017, 121(8): 1000-20. DOI: 10.1161/CIRCRESAHA.117.310355.
[5]
Tamareille S, Mignen O, Capiod T, et al. Highglucose-induced apoptosis throughstore-operated calcium entry and calcineurin in human umbilical vein endothelial cells[J]. Cell Calcium, 2006, 39(1): 47-55. DOI: 10.1016/j.ceca.2005.09.008.
[6]
Kiselyov K, Shin DM, Muallem S. Signalling specificity in GPCRdependent Ca2+ signalling[J]. Cell Signal, 2003, 15(3): 243-53. DOI: 10.1016/S0898-6568(02)00074-8.
[7]
Daskoulidou N, Zeng B, Berglund LM, et al. High glucose enhances store-operated Calcium entry by upregulating ORAI/STIM via calcineurin-NFAT signalling[J]. J Mol Med (Berl), 2015, 93(5): 511-21. DOI: 10.1007/s00109-014-1234-2.
[8]
Bueno OF, Wilkins BJ, Tymitz KM, et al. Impaired cardiac hypertrophic response in calcineurin a beta-deficient mice[J]. Proc Natl Acad Sci USA, 2002, 99(7): 4586-91. DOI: 10.1073/pnas.072647999.
[9]
Bendickova K, Tidu F, Fric J. Calcineurin-NFAT signalling in myeloid leucocytes: new prospects and pitfalls in immunosuppressive therapy[J]. EMBO Mol Med, 2017, 9(8): 990-9. DOI: 10.15252/emmm.201707698.
[10]
Ichida M, Finkel T. Ras regulates NFAT3 activity in cardiac myocytes[J]. J Biol Chem, 2001, 276(5): 3524-30. DOI: 10.1074/jbc.M004275200.
[11]
Bai SM, Kerppola TK. Opposing roles of FoxP1 and Nfat3 in transcriptional control of cardiomyocyte hypertrophy[J]. Mol Cell Biol, 2011, 31(14): 3068-80. DOI: 10.1128/MCB.00925-10.
[12]
Liu CJ, Cheng YC, Lee KW, et al. Lipopolysaccharide induces cellular hypertrophy through calcineurin/NFAT-3 signaling pathway in H9c2 myocardiac cells[J]. Mol Cell Biochem, 2008, 313(1/2): 167-78.
[13]
Asadi F, Razmi A, Dehpour AR, et al. Tropisetron inhibits high glucose-induced calcineurin/NFAT hypertrophic pathway in H9c2 myocardial cells[J]. J Pharm Pharmacol, 2016, 68(4): 485-93. DOI: 10.1111/jphp.2016.68.issue-4.
[14]
Dierck F, Kuhn C, Rohr C, et al. The novel cardiac z-disc protein CEFIP regulates cardiomyocyte hypertrophy by modulating calcineurin signaling[J]. J Biol Chem, 2017, 292(37): 15180-91. DOI: 10.1074/jbc.M117.786764.
[15]
Wang J, Wang Y, Zhang W, et al. Phenylephrine promotes cardiac fibroblast proliferation through calcineurin-NFAT pathway[J]. Front Biosci (Landmark Ed), 2016, 21(3): 502-13. DOI: 10.2741/4405.
[16]
Williams CR, Gooch JL. Calcineurin a beta regulates NADPH oxidase (Nox) expression and activity via nuclear factor of activated T cells (NFAT) in response to high glucose[J]. J Biol Chem, 2014, 289(8): 4896-905. DOI: 10.1074/jbc.M113.514869.
[17]
Dassanayaka S, Zheng YT, Gibb AA, et al. Cardiac-specific overexpression of aldehyde dehydrogenase 2 exacerbates cardiac remodeling in response to pressure overload[J]. Redox Biol, 2018, 17(2): 440-9.
[18]
Shen C, Wang C, Fan F, et al. Acetaldehyde dehydrogenase 2 (ALDH2) deficiency exacerbates pressure overload-induced cardiac dysfunction by inhibiting Beclin-1 dependent autophagy pathway[J]. Biochim Biophys Acta, 2015, 1852(2, SI): 310-8. DOI: 10.1016/j.bbadis.2014.07.014.
[19]
Guo YL, Yu WJ, Sun DD, et al. A novel protective mechanism for mitochondrial aldehyde dehydrogenase (ALDH2) in type i diabetesinduced cardiac dysfunction: Role of AMPK-regulated autophagy[J]. Biochim Biophys Acta, 2015, 1852(2, SI): 319-31. DOI: 10.1016/j.bbadis.2014.05.017.
[20]
Kang PF, Wu WJ, Tang Y, et al. Activation of ALDH2 with low concentration of ethanol attenuates myocardial ischemia/reperfusion injury in diabetes rat model[J]. Oxid Med Cell Longev, 2016, 18(10): 6190504.
[21]
Estrada IA, Donthamsetty R, Debski P, et al. STIM1 restores coronary endothelial function in type 1 diabetic mice[J]. Circ Res, 2012, 111(9): 1166-75. DOI: 10.1161/CIRCRESAHA.112.275743.
[22]
徐小红, 阮骆阳, 田小华, 等. 高糖激活Ca~(2+)-CaN-NFAT3信号通路致H9c2细胞肥大[J]. 中国病理生理杂志, 2015, 31(11): 2016-20. DOI: 10.3969/j.issn.1000-4718.2015.11.015.
[23]
Li M, He HP, Gong HQ, et al. NFATc4 and myocardin synergistically up-regulate the expression of LTCC alpha 1C in ET-1-induced cardiomyocyte hypertrophy[J]. Life Sci, 2016, 155(6): 11-20.
[24]
Fang T, Cao R, Wang W, et al. Alterations in necroptosis during ALDH2mediated protection against high glucoseinduced H9c2 cardiac cell injury[J]. Mol Med Rep, 2018, 18(3): 2807-15.
[25]
Ueta CB, Campos JC, Prestes e Albuquerque R, et al. Cardioprotection induced by a brief exposure to acetaldehyde: role of aldehyde dehydrogenase 2[J]. Cardiovasc Res, 2018, 114(7): 1006-15. DOI: 10.1093/cvr/cvy070.
[26]
Zhang T, Zhao Q, Ye F, et al. Alda-1, an ALDH2 activator, protects against hepatic ischemia/reperfusion injury in rats via inhibition of oxidative stress[J]. Free Radic Res, 2018, 52(6): 629-38. DOI: 10.1080/10715762.2018.1459042.
[27]
Dhingra A, Garg A, Kaur S, et al. Epidemiology of heart failure with preserved ejection fraction[J]. Curr Heart Fail Rep, 2014, 11(4): 354-65. DOI: 10.1007/s11897-014-0223-7.
[28]
Hua Y, Chen HM, Zhao XY, et al. Alda1, an aldehyde dehydrogenase2 agonist, improves longterm survival in rats with chronic heart failure following myocardial infarction[J]. Mol Med Rep, 2018, 18(3): 3159-66.
[29]
Pan GD, Deshpande M, Thandavarayan RA. ALDH2 inhibition potentiates high glucose stress-induced injury in cultured cardiomyocytes[J]. J Diabetes Res, 2016, 12(2): 1390861.
[30]
Gu X, Fang T, Kang P, et al. Effect of ALDH2 on high glucoseinduced cardiac fibroblast oxidative stress, apoptosis, and fibrosis[J]. Oxid Med Cell Longev, 2017, 10(9): 9257967.