Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (6): 1122-1130.doi: 10.12122/j.issn.1673-4254.2025.06.02
Changlong FU1,2(), Lu XU1, Ruolan CHEN1, Jinghang YANG1, Yan LUO1, Yanfeng HUANG1,2(
)
Received:
2024-12-27
Online:
2025-06-20
Published:
2025-06-27
Contact:
Yanfeng HUANG
E-mail:993001232@qq.com;banglongnet@126.com
Supported by:
Changlong FU, Lu XU, Ruolan CHEN, Jinghang YANG, Yan LUO, Yanfeng HUANG. Tougu Xiaotong Capsule promotes repair of osteoarthritis cartilage damage in mice by activating the CXCL12/GDF5 pathway[J]. Journal of Southern Medical University, 2025, 45(6): 1122-1130.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.06.02
Score | Cartilage structure | Chondrocytes | Matrix staining | Tidemark |
---|---|---|---|---|
0 | Normal | Normal | Normal | Complete |
1 | Irregular surface | Diffuse cellular hyperplasia | Mild weakening | Incomplete |
2 | Surface irregularity with pannus | Focal cellular hyperplasia | Moderate weakening | - |
3 | Fissures extending into the transitional zone | Hypocellularity | Severe weakening | - |
4 | Fissures penetrating the radial zone | - | Uncolored | - |
5 | Fissures invading the calcified layer | - | - | - |
6 | Complete structural disruption | - | - | - |
Tab.1 Criteria for Mankin's Scoring of joint cartilage damage
Score | Cartilage structure | Chondrocytes | Matrix staining | Tidemark |
---|---|---|---|---|
0 | Normal | Normal | Normal | Complete |
1 | Irregular surface | Diffuse cellular hyperplasia | Mild weakening | Incomplete |
2 | Surface irregularity with pannus | Focal cellular hyperplasia | Moderate weakening | - |
3 | Fissures extending into the transitional zone | Hypocellularity | Severe weakening | - |
4 | Fissures penetrating the radial zone | - | Uncolored | - |
5 | Fissures invading the calcified layer | - | - | - |
6 | Complete structural disruption | - | - | - |
Gene | Primer sequence | Primer length |
---|---|---|
CXCL12 | F:5'-GCTCTGCATCAGTGACGGTA-3' R:5'-GCCGTGCAACAATCTGAAGG-3' | 143 bp |
GDF5 | F:5'-CACGCAGTCATTCAGACCCT-3' R:5'-TACACCACGTTGTTGGCAGA-3' | 125 bp |
Collagen II | F:5'-ACCAGATTGAGAGCATCCGC-3' R:5'-CAGCCCTGGTTGGGATCAAT-3' | 127 bp |
Aggrecan | F:5'-AGCACTACCTCCGACATAGAC-3' R:5'-TGATGGCAACATTCACCTCTG-3' | 127 bp |
Comp | F:5'-CATCCTACCGCTGGTTCCTG-3' R:5'-CCGTGTCCAACACCACATTG-3' | 108 bp |
Sox9 | F:5'-CCACGGAACAGACTCACATC-3' R:5'-CCTCTCGCTTCAGATCAACTT-3' | 192 bp |
GAPDH | F:5'-TGGAAAGCTGTGGCGTGATG-3' R:5'-TACTTGGCAGGTTTCTCCAGG-3' | 189 bp |
Tab.2 Primer sequences for RT-qPCR
Gene | Primer sequence | Primer length |
---|---|---|
CXCL12 | F:5'-GCTCTGCATCAGTGACGGTA-3' R:5'-GCCGTGCAACAATCTGAAGG-3' | 143 bp |
GDF5 | F:5'-CACGCAGTCATTCAGACCCT-3' R:5'-TACACCACGTTGTTGGCAGA-3' | 125 bp |
Collagen II | F:5'-ACCAGATTGAGAGCATCCGC-3' R:5'-CAGCCCTGGTTGGGATCAAT-3' | 127 bp |
Aggrecan | F:5'-AGCACTACCTCCGACATAGAC-3' R:5'-TGATGGCAACATTCACCTCTG-3' | 127 bp |
Comp | F:5'-CATCCTACCGCTGGTTCCTG-3' R:5'-CCGTGTCCAACACCACATTG-3' | 108 bp |
Sox9 | F:5'-CCACGGAACAGACTCACATC-3' R:5'-CCTCTCGCTTCAGATCAACTT-3' | 192 bp |
GAPDH | F:5'-TGGAAAGCTGTGGCGTGATG-3' R:5'-TACTTGGCAGGTTTCTCCAGG-3' | 189 bp |
Fig.1 Assessment of the therapeutic efficacy of Tougu Xiaotong Capsule (TXC) in mouse models with joint cartilage damage. A: Mechanical withdrawal threshold (MWT). B: Thermal withdrawal latency (TWL). C: Mankin's Score. D: Micro-CT findings. E, F: Safranine O and fast green staining results (Scale bar=100 μm). *P<0.05 vs NC group; #P<0.05 vs Model group.
Fig.2 Effect of TXC on mRNA levels of CXCL12, GDF5, collagen II, aggrecan, Comp and Sox9 in mouse cartilage tissue. *P<0.05 vs NC group; #P<0.05 vs Model group.
Fig.3 Culture, identification, and CXCL12 lentiviral transfection of mouse synovial mesenchymal stem cells (SMSCs). A: Primary cultures of mouse SMSCs. B: Identification of mouse SMSCs. C: Mouse SMSCs with CXCL12 lentiviral transfection (Scale bar=25 μm).
Fig.6 TXC promotes chondrogenic differentiation of mouse SMSCs. A: Immunohistochemical staining for collagen II (scale bar=25 μm). B: Protein expression of CXCL12, GDF5, and Sox9 detected by Western blotting. *P<0.05 vs Control group; #P<0.05 vs sh-CXCL12 group.
1 | Ishak-Samrin M, Naina-Mohamed I, Zulfarina MS, et al. Treatment of knee osteoarthritis and chondral injury with umbilical cord/Wharton's jelly-derived mesenchymal stem cells: a systematic review of safety and efficacy[J]. J Funct Biomater, 2025, 16(3): 84. doi:10.3390/jfb16030084 |
2 | Fogarty AE, Chiang MC, Douglas S, et al. Posttraumatic osteoarthritis after athletic knee injury: a narrative review of diagnostic imaging strategies[J]. PMR, 2025, 17(1): 96-106. doi:10.1002/pmrj.13217 |
3 | Pueyo Moliner A, Ito K, Zaucke F, et al. Restoring articular cartilage: insights from structure, composition and development[J]. Nat Rev Rheumatol, 2025, 21(5): 291-308. doi:10.1038/s41584-025-01236-7 |
4 | 高雨阳, 崔 娅, 黄登清, 等. 基于经筋理论改善膝骨关节炎活动痛临证经验[J]. 中国民族民间医药, 2025, 34(7): 95-8. |
5 | 章梓虹, 范华娜, 陈艳芬. 膝骨关节炎的中医病因病机及外治法研究进展[J]. 广东药科大学学报, 2024, 40(5): 139-43. doi:10.16809/j.cnki.2096-3653.2024051105 |
6 | 黄艳峰, 林 晴, 谢新宇, 等. 补肝肾、强筋骨类中药活性成分对软骨细胞增殖作用机制研究进展[J]. 风湿病与关节炎, 2022, 11(3): 59-62. doi:10.3969/j.issn.2095-4174.2022.03.016 |
7 | 刘献祥, 郑春松, 叶蕻芝, 等. 透骨消痛胶囊防治骨性关节炎的化学空间分析[J]. 福建中医学院学报, 2010, 20(2): 16-8, 27. doi:10.3969/j.issn.1004-5627.2010.02.006 |
8 | Li XH, Wu MX, Ye HZ, et al. Experimental study on the suppression of sodium nitroprussiate-induced chondrocyte apoptosis by Tougu Xiaotong Capsule (透骨消痛胶囊)-containing serum[J]. Chin J Integr Med, 2011, 17(6): 436-43. doi:10.1007/s11655-011-0751-x |
9 | 陈 鸿, 洪昆达. 透骨消痛胶囊治疗疼痛性膝骨性关节炎30例[J]. 福建中医药, 2015, 46(2): 21-2. |
10 | 吴广文, 叶锦霞, 郑春松, 等. 骨性关节炎模型大鼠关节软骨变化及透骨消痛胶囊干预的作用[J]. 中国组织工程研究, 2014, 18(49): 7924-9. doi:10.3969/j.issn.2095-4344.2014.49.010 |
11 | 朱海波, 何忠斌. 透骨消痛胶囊治疗骨质疏松性骨关节炎的临床疗效[J]. 内蒙古中医药, 2019, 38(8): 25-6. |
12 | 付长龙, 林艳铭, 兰书洁, 等. 透骨消痛胶囊调控Nav1.7减轻膝骨关节炎小鼠软骨细胞退变[J]. 南方医科大学学报, 2024, 44(11): 2074-81. doi:10.12122/j.issn.1673-4254.2024.11.03 |
13 | 吴追乐, 刘献祥, 李西海, 等. 透骨消痛颗粒诱导骨髓间充质干细胞向软骨细胞的分化[J]. 中国组织工程研究与临床康复, 2009, 13(33): 6456-60. doi:10.3969/j.issn.1673-8225.2009.33.010 |
14 | Meriç G, Eren O, Yaba A, et al. Comparative analysis of the therapeutic effects of mesenchymal stem cells and exosomes on cartilage regeneration: exploring their synergistic potential with hyaluronic acid for treating articular cartilage defects[J]. Eur J Orthop Surg Traumatol, 2025, 35(1): 154. doi:10.1007/s00590-025-04284-7 |
15 | Sun XY, Long RC, Chen Q, et al. miR-378a-3p regulates the BMP2-smad pathway to promote chondrogenic differentiation of synovium-derived mesenchymal stem cells[J]. Cell Biochem Biophys, 2025, 83(1): 1277-88. doi:10.1007/s12013-024-01561-w |
16 | Worden AN, Pittard EG, Stern M, et al. The role of the CXCL12/CXCR4 signaling pathway in regulating cellular migration[J]. Microsc Microanal, 2025, 31(2): ozaf011. doi:10.1093/mam/ozaf011 |
17 | Novakov V, Novakova O, Churnosova M, et al. Polymorphism rs143384 GDF5 reduces the risk of knee osteoarthritis development in obese individuals and increases the disease risk in non-obese population[J]. Arthroplasty, 2024, 6(1): 12. doi:10.1186/s42836-023-00229-9 |
18 | To K, Fei LJ, Pett JP, et al. A multi-omic atlas of human embryonic skeletal development[J]. Nature, 2024, 635(8039): 657-67. doi:10.1038/s41586-024-08189-z |
19 | Zheng YZ, Fu LW, Zhang ZC, et al. Three-dimensional bioprinting of growth differentiation factor 5-preconditioned mesenchymal stem cell-derived exosomes facilitates articular cartilage endogenous regeneration[J]. ACS Nano, 2025, 19(16): 15281-301. doi:10.1021/acsnano.4c13492 |
20 | Seedhom BB, Luo ZJ, Goldsmith AJ, et al. In-situ engineering of cartilage repair: a pre-clinical in-vivo exploration of a novel system[J]. Proc Inst Mech Eng H, 2007, 221(5): 475-88. doi:10.1243/09544119jeim188 |
21 | 董 苑, 李彩霞, 赵 娴, 等. 小鼠股骨缺损模型的构建及SDF-1表达的检测[J]. 昆明医科大学学报, 2020, 41(5): 29-32. |
22 | 洪昆达, 万 甜, 李 俐, 等. 温针合透骨消痛胶囊内服治疗疼痛性膝骨性关节炎30例[J]. 中医药通报, 2010, 9(3): 55-6. doi:10.3969/j.issn.1671-2749.2010.03.017 |
23 | Cheng G, Wang XL, Zhang F, et al. Reparative homing of bone mesenchymal stem cells induced by iMSCs via the SDF-1/CXCR4 axis for articular cartilage defect restoration[J]. Biomed Pharmacother, 2024, 181: 117649. doi:10.1016/j.biopha.2024.117649 |
24 | Wu YZ, Lyu ZC, Hu F, et al. A chondroitin sulphate hydrogel with sustained release of SDF-1α for extensive cartilage defect repair through induction of cell homing and promotion of chondrogenesis[J]. J Mater Chem B, 2024, 12(35): 8672-87. doi:10.1039/d4tb00624k |
25 | Wang YZ, Sun XJ, Lv J, et al. Stromal cell-derived factor-1 accelerates cartilage defect repairing by recruiting bone marrow mesenchymal stem cells and promoting chondrogenic differentiation[J]. Tissue Eng Part A, 2017, 23(19/20): 1160-8. doi:10.1089/ten.tea.2017.0046 |
26 | Zhao AD, Chung M, Yang Y, et al. The SDF-1/CXCR4 signaling pathway directs the migration of systemically transplanted bone marrow mesenchymal stem cells towards the lesion site in a rat model of spinal cord injury[J]. Curr Stem Cell Res Ther, 2023, 18(2): 216-30. doi:10.2174/1574888x17666220510163245 |
27 | 黄艳峰, 马德尊, 付长龙, 等. 基于SDF-1/CXCR4轴探讨补肾壮筋汤促进小鼠BMSCs归巢和保护关节软骨的机制研究[J]. 康复学报, 2024, 34(1): 44-54. doi:10.3724/SP.J.1329.2024.01007 |
28 | Budhiparama NC, Putramega D, Lumban-Gaol I. Orthobiologics in knee osteoarthritis, dream or reality[J]? Arch Orthop Trauma Surg, 2024, 144(9): 3937-46. doi:10.1007/s00402-024-05310-9 |
29 | Meena A, D'Ambrosi R, Farinelli L, et al. Should I add orthobiologics to my knee osteotomy practice? A systematic review[J]. J ISAKOS, 2024, 9(6): 100282. doi:10.1016/j.jisako.2024.06.001 |
30 | Mahmoud EE, Adachi N, Mawas AS, et al. Coculturing of mesenchymal stem cells of different sources improved regenerative capability of osteochondral defect in the mature rabbit: an in vivo study[J]. J Orthop Surg (Hong Kong), 2019, 27(2): 2309499019839850. doi:10.1177/2309499019839850 |
31 | 袁 潇, 梁松林, 谢亚楠, 等. 不同来源间充质干细胞治疗炎症性肠病[J]. 中国组织工程研究, 2025, 29(31): 6811-20. doi:10.12307/2025.548 |
32 | Zamudio-Cuevas Y, Plata-Rodríguez R, Fernández-Torres J, et al. Synovial membrane mesenchymal stem cells for cartilaginous tissues repair[J]. Mol Biol Rep, 2022, 49(3): 2503-17. doi:10.1007/s11033-021-07051-z |
33 | Fang W, Sun ZT, Chen X, et al. Synovial fluid mesenchymal stem cells for knee arthritis and cartilage defects: a review of the literature[J]. J Knee Surg, 2021, 34(13): 1476-85. doi:10.1055/s-0040-1710366 |
34 | Walczak BE, Jiao HL, Lee MS, et al. Reprogrammed synovial fluid-derived mesenchymal stem/stromal cells acquire enhanced therapeutic potential for articular cartilage repair[J]. Cartilage, 2021, 13(): 530S-43S. doi:10.1177/19476035211040858 |
35 | Barter MJ, Turner DA, Rice SJ, et al. SERPINA3 is a marker of cartilage differentiation and is essential for the expression of extracellular matrix genes during early chondrogenesis[J]. Matrix Biol, 2024, 133: 33-42. doi:10.1016/j.matbio.2024.07.004 |
[1] | Changlong FU, Yanming LIN, Shujie LAN, Yue CHEN, Chao LI, Shiyu LU, Qing LIN. Tougu Xiaotong Capsule alleviates cartilage degeneration in mice with knee osteoarthritis by modulating Nav1.7 [J]. Journal of Southern Medical University, 2024, 44(11): 2074-2081. |
[2] | GUAN Pengfei, CUI Ruiwen, WANG Qiyou, SUN Yongjian. A 3D hydrogel loaded with exosomes derived from bone marrow stem cells promotes cartilage repair in rats by modulating immunological microenvironment [J]. Journal of Southern Medical University, 2022, 42(4): 528-537. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||