Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (5): 1031-1038.doi: 10.12122/j.issn.1673-4254.2025.05.16
Previous Articles Next Articles
Nuozhou WENG(), Bin TAN, Wentao ZENG, Jiayu GU, Lianji WENG, Kehong ZHENG(
)
Received:
2025-02-26
Online:
2025-05-20
Published:
2025-05-23
Contact:
Kehong ZHENG
E-mail:Wnz9906@163.com;779498458@qq.com
Nuozhou WENG, Bin TAN, Wentao ZENG, Jiayu GU, Lianji WENG, Kehong ZHENG. RGL1 overexpression promotes metastasis of colorectal cancer by upregulating motile focal adhesion assembly via activating the CDC42/RAC1 complex[J]. Journal of Southern Medical University, 2025, 45(5): 1031-1038.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.05.16
Fig.1 RGL1 is highly expressed in metastatic colorectal cancer (CRC). A: Expression of RGL1 in non-metastatic CRC (nmCRC) and metastatic CRC (mCRC) based on data from GSE39582 and GSE87211 datasets. B: RGL1 mRNA levels in clinical specimens of nmCRC and mCRC. C: Immunohistochemical staining of RGL1 in nmCRC and mCRC (Original magnification: ×400). *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
Fig.2 Construction of RGL1-overexpressing and knockdown cell lines. A: Expression of RGL1 in NCM460 and CRC cell lines detected by Western blotting. B, C: Verification of RGL1 overexpression and knockdown efficiency in different CRC cell lines using Western blotting.
Fig.3 Overexpression of RGL1 promotes metastasis and invasion of CRC. A: Transwell migration assay of CRC cells with RGL1 overexpression or knockdown. B: Transwell invasion assay of CRC cells with RGL1 overexpression or knockdown. C: Orthotopical tumor and liver metastasis of SW480 cell xenografts with and without RGL1 knockdown implanted in the cecum of nude mice. D: Survival curve analysis of mice in shNC and shRGL1 groups. E: HE staining of liver tissues from mice in shNC and shRGL1 groups. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
Fig.4 RGL1 overexpression promotes motile focal adhesion assembly. A: Relationship between RGL1 and focal adhesion in CRC based on data from Gene Set Enrichment Analysis (GSEA). B: Fibronectin adhesion assays for detecting adherent cells between veh and RGL1+HCT116 cells. C: FN adhesion assays for detecting adherent cells between shNC and shRGL1 SW480 cells (***P<0.001, ****P<0.0001). D: Immunofluorescence assay showing cellular expression of FAK (scale bar=10 µm). E: Immunofluorescence assay showing cellular expression of paxillin (scale bar=10 µm).
Fig.5 RGL1 facilitates focal adhesion assembly by activating the CDC42/RAC1 complex. A: Western blotting for Rho GTPase family (CDC42, RAC1 and RhoA) in RGL1+ or shRGL1 cells. B-D: Co-immunoprecipitation assay of RhoA, RhoAGTP, CDC42, CDC42GTP, RAC1 and RAC1GTP in RGL+ or shRGL1 cells.
1 | Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-63. |
2 | Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review[J]. JAMA, 2021, 325(7): 669-85. |
3 | Sharma V, Kumar A. Microsatellite-instability-high metastatic colorectal cancer[J]. N Engl J Med, 2025, 392(7): 726. |
4 | Ciardiello F, Ciardiello D, Martini G, et al. Clinical management of metastatic colorectal cancer in the era of precision medicine[J]. CA Cancer J Clin, 2022, 72(4): 372-401. |
5 | Eves BJ, Gebregiworgis T, Gasmi-Seabrook GMC, et al. Structures of RGL1 RAS-association domain in complex with KRAS and the oncogenic G12V mutant[J]. J Mol Biol, 2022, 434(9): 167527. |
6 | Bodemann BO, White MA. Ral GTPases and cancer: linchpin support of the tumorigenic platform[J]. Nat Rev Cancer, 2008, 8(2): 133-40. |
7 | Yan C, Liu D, Li L, et al. Discovery and characterization of small molecules that target the GTPase Ral[J]. Nature, 2014, 515(7527): 443-7. |
8 | Smith SC, Theodorescu D. The Ral GTPase pathway in metastatic bladder cancer: key mediator and therapeutic target[J]. Urol Oncol, 2009, 27(1): 42-7. |
9 | Smith SC, Baras AS, Owens CR, et al. Transcriptional signatures of Ral GTPase are associated with aggressive clinicopathologic charac-teristics in human cancer[J]. Cancer Res, 2012, 72(14): 3480-91. |
10 | Zago G, Veith I, Singh MK, et al. RalB directly triggers invasion downstream Ras by mobilizing the Wave complex[J]. eLife, 2018, 7: e40474. |
11 | das Chagas PF, de Sousa GR, Veronez LC, et al. Identification ofITPR1as a hub gene of group 3 medulloblastoma and coregulated genes with potential prognostic values[J]. J Mol Neurosci, 2022, 72(3): 633-41. |
12 | Jansen S, Gosens R, Wieland T, et al. Paving the rho in cancer metastasis: rho GTPases and beyond[J]. Pharmacol Ther, 2018, 183: 1-21. |
13 | Heasman SJ, Ridley AJ. Mammalian Rho GTPases: new insights into their functions from in vivo studies[J]. Nat Rev Mol Cell Biol, 2008, 9(9): 690-701. |
14 | Ridley AJ. Rho GTPase signalling in cell migration[J]. Curr Opin Cell Biol, 2015, 36: 103-12. |
15 | Maldonado MDM, Dharmawardhane S. Targeting rac and Cdc42 GTPases in cancer[J]. Cancer Res, 2018, 78(12): 3101-11. |
16 | Guilluy C, Dubash AD, García-Mata R. Analysis of RhoA and Rho GEF activity in whole cells and the cell nucleus[J]. Nat Protoc, 2011, 6(12): 2050-60. |
17 | Kirkby NS, Lundberg MH, Wright WR, et al. COX-2 protects against atherosclerosis independently of local vascular prostacyclin: identification of COX-2 associated pathways implicate Rgl1 and lymphocyte networks[J]. PLoS One, 2014, 9(6): e98165. |
18 | Guo G, Shi X, Wang H, et al. Epitranscriptomic N4-acetylcytidine profiling in CD4+ T cells of systemic lupus erythematosus[J]. Front Cell Dev Biol, 2020, 8: 842. |
19 | Park J, Kim DY, Gee HY, et al. Genome-wide association study to identify genetic factors linked to HBV reactivation following liver transplantation in HBV-infected patients[J]. Int J Mol Sci, 2024, 26(1): 259. |
20 | Vigil D, Martin TD, Williams F, et al. Aberrant overexpression of the Rgl2 ral small GTPase-specific guanine nucleotide exchange factor promotes pancreatic cancer growth through ral-dependent and ral-independent mechanisms[J]. J Biol Chem, 2010, 285(45): 34729-40. |
21 | Santos AO, Parrini MC, Camonis J. RalGPS2 is essential for survival and cell cycle progression of lung cancer cells independently of its established substrates ral GTPases[J]. PLoS One, 2016, 11(5): e0154840. |
22 | Zhou H, Liu Z, Wang Y, et al. Colorectal liver metastasis: molecular mechanism and interventional therapy[J]. Signal Transduct Target Ther, 2022, 7(1): 70. |
23 | Zhang X, Ren L, Wu J, et al. ARHGEF37 overexpression promotes extravasation and metastasis of hepatocellular carcinoma via dir-ectly activating Cdc42[J]. J Exp Clin Cancer Res, 2022, 41(1): 230. |
24 | Guo X, Mu B, Zhu L, et al. Rabenosyn-5 suppresses non-small cell lung cancer metastasis via inhibiting CDC42 activity[J]. Cancer Gene Ther, 2024, 31(10): 1465-76. |
25 | Zhang J, Guo F, Li C, et al. Loss of TTC17 promotes breast cancer metastasis through RAP1/CDC42 signaling and sensitizes it to rapamycin and paclitaxel[J]. Cell Biosci, 2023, 13(1): 50. |
26 | Makrodouli E, Oikonomou E, Koc M, et al. BRAF and RAS oncogenes regulate Rho GTPase pathways to mediate migration and invasion properties in human colon cancer cells: a comparative study[J]. Mol Cancer, 2011, 10: 118. |
27 | Glogowska A, Thanasupawat T, Beiko J, et al. Novel CTRP8-RXFP1-JAK3-STAT3 axis promotes Cdc42-dependent actin remodeling for enhanced filopodia formation and motility in human glioblastoma cells[J]. Mol Oncol, 2022, 16(2): 368-87. |
28 | An S, Vo TTL, Son T, et al. SAMHD1-induced endosomal FAK signaling promotes human renal clear cell carcinoma metastasis by activating Rac1-mediated lamellipodia protrusion[J]. Exp Mol Med, 2023, 55(4): 779-93. |
29 | Wu WJ, Tu S, Cerione RA. Activated Cdc42 sequesters c-Cbl and prevents EGF receptor degradation[J]. Cell, 2003, 114(6): 715-25. |
30 | Xu XP, He HL, Hu SL, et al. Ang II-AT2R increases mesenchymal stem cell migration by signaling through the FAK and RhoA/Cdc42 pathways in vitro [J]. Stem Cell Res Ther, 2017, 8(1): 164. |
31 | Clark-Cotton MR, Jacobs KC, Lew DJ. Chemotropism and cell-cell fusion in fungi[J]. Microbiol Mol Biol Rev, 2022, 86(1): e0016521. |
32 | Rutkowski DM, Vincenzetti V, Vavylonis D, et al. Cdc42 mobility and membrane flows regulate fission yeast cell shape and survival[J]. Nat Commun, 2024, 15(1): 8363. |
33 | Pelish HE, Peterson JR, Salvarezza SB, et al. Secramine inhibits Cdc42-dependent functions in cells and Cdc42 activation in vitro [J]. Nat Chem Biol, 2006, 2(1): 39-46. |
34 | Murai H, Ikeda M, Kishida S, et al. Characterization of Ral GDP dissociation stimulator-like (RGL) activities to regulate c-fos promoter and the GDP/GTP exchange of Ral[J]. J Biol Chem, 1997, 272(16): 10483-90. |
[1] | . Mechanism of Platycarya strobilacea Sieb. et Zucc extract-induced methuosis in human nasopharyngeal carcinoma CNE1 and CNE2 cells [J]. Journal of Southern Medical University, 2017, 37(06): 827-. |
[2] | . Effect of shRNA-mediated CDC42 knockdown on morphology of colorectal cancer cells in vitro [J]. Journal of Southern Medical University, 2016, 36(04): 514-. |
[3] |
.
Construction of colorectal cancer cell line stably expressing mir-101 and identification of the target gene of mir-101 [J]. Journal of Southern Medical University, 2014, 34(07): 928-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||