Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (1): 162-169.doi: 10.12122/j.issn.1673-4254.2025.01.19
Shizhou TANG1(), Ruolan SU1, Shuting LI1, Zhenzhen LAI1, Jinhong HUANG1,2, Shanzhou NIU1,2(
)
Received:
2024-09-12
Online:
2025-01-20
Published:
2025-01-20
Contact:
Shanzhou NIU
E-mail:206976182@qq.com;szniu@gnnu.edu.cn
Supported by:
Shizhou TANG, Ruolan SU, Shuting LI, Zhenzhen LAI, Jinhong HUANG, Shanzhou NIU. A low-dose CT reconstruction method using sub-pixel anisotropic diffusion[J]. Journal of Southern Medical University, 2025, 45(1): 162-169.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.01.19
Index | FBP | PWLS-Gibbs | PWLS-TV | PWLS-SPAD |
---|---|---|---|---|
SSIM | 0.752083 | 0.913535 | 0.954934 | 0.963646 |
FSIM | 0.767575 | 0.913088 | 0.916857 | 0.929354 |
RMSE | 0.111569 | 0.041859 | 0.035302 | 0.033924 |
Tab.1 Evaluation indexes of the reconstructed Shepp-Logan images by different methods
Index | FBP | PWLS-Gibbs | PWLS-TV | PWLS-SPAD |
---|---|---|---|---|
SSIM | 0.752083 | 0.913535 | 0.954934 | 0.963646 |
FSIM | 0.767575 | 0.913088 | 0.916857 | 0.929354 |
RMSE | 0.111569 | 0.041859 | 0.035302 | 0.033924 |
Fig.4 Zoomed-in views of the reconstructed Shepp-Logan phantom images by FBP method (A), PWLS-Gibbs method (B), PWLS-TV method (C) and the proposed PWLS-SPAD method (D).
Index | FBP | PWLS-Gibbs | PWLS-TV | PWLS-SPAD |
---|---|---|---|---|
SSIM | 0.203666 | 0.813477 | 0.850652 | 0.888047 |
FSIM | 0.399392 | 0.790398 | 0.827324 | 0.853895 |
Tab.2 Evaluation indexes of the region-of-interest (ROI) in Fig.4
Index | FBP | PWLS-Gibbs | PWLS-TV | PWLS-SPAD |
---|---|---|---|---|
SSIM | 0.203666 | 0.813477 | 0.850652 | 0.888047 |
FSIM | 0.399392 | 0.790398 | 0.827324 | 0.853895 |
Index | FBP | PWLS-Gibbs | PWLS-TV | PWLS-SPAD |
---|---|---|---|---|
SSIM | 0.793550 | 0.893789 | 0.840232 | 0.906532 |
FSIM | 0.814784 | 0.877465 | 0.845212 | 0.893061 |
RMSE | 0.073716 | 0.059505 | 0.066048 | 0.053903 |
Tab.3 Evaluation indexes of reconstructed XCAT results by different methods
Index | FBP | PWLS-Gibbs | PWLS-TV | PWLS-SPAD |
---|---|---|---|---|
SSIM | 0.793550 | 0.893789 | 0.840232 | 0.906532 |
FSIM | 0.814784 | 0.877465 | 0.845212 | 0.893061 |
RMSE | 0.073716 | 0.059505 | 0.066048 | 0.053903 |
Fig.6 Zoomed-in views of the reconstructed XCAT phantom images by FBP method (A), PWLS-Gibbs method (B), PWLS-TV method (C) and the proposed PWLS-SPAD method (D).
Index | FBP | PWLS-Gibbs | PWLS-TV | PWLS-SPAD |
---|---|---|---|---|
SSIM | 0.748943 | 0.852549 | 0.798578 | 0.873204 |
FSIM | 0.806244 | 0.862104 | 0.832281 | 0.867679 |
Tab.4 Evaluation indexes of ROI in Fig.6
Index | FBP | PWLS-Gibbs | PWLS-TV | PWLS-SPAD |
---|---|---|---|---|
SSIM | 0.748943 | 0.852549 | 0.798578 | 0.873204 |
FSIM | 0.806244 | 0.862104 | 0.832281 | 0.867679 |
Index | FBP | PWLS-Gibbs | PWLS-TV | PWLS-SPAD |
---|---|---|---|---|
SSIM | 0.795249 | 0.820050 | 0.914574 | 0.948223 |
FSIM | 0.936031 | 0.948504 | 0.972051 | 0.976237 |
RMSE | 0.068670 | 0.060228 | 0.044872 | 0.038042 |
PSNR | 23.26 | 24.40 | 26.96 | 28.39 |
Tab.5 Evaluation indexes of the reconstructed low-dose clinical CT images by different methods
Index | FBP | PWLS-Gibbs | PWLS-TV | PWLS-SPAD |
---|---|---|---|---|
SSIM | 0.795249 | 0.820050 | 0.914574 | 0.948223 |
FSIM | 0.936031 | 0.948504 | 0.972051 | 0.976237 |
RMSE | 0.068670 | 0.060228 | 0.044872 | 0.038042 |
PSNR | 23.26 | 24.40 | 26.96 | 28.39 |
Fig.8 Zoomed-in views of the ROI in the reconstructed images by FBP method at 400 mAs (A) and 50 mAs (B), by PWLS-Gibbs at 50 mAs (C), by PWLS-TV at 50 mAs (D), and by the proposed PWLS-SPAD method at 50 mAs (E).
Index | FBP | PWLS-Gibbs | PWLS-TV | PWLS-SPAD |
---|---|---|---|---|
SSIM | 0.622500 | 0.786073 | 0.783700 | 0.810993 |
FSIM | 0.840642 | 0.865528 | 0.882331 | 0.919254 |
Tab.6 Evaluation indexes of ROI in Fig.8
Index | FBP | PWLS-Gibbs | PWLS-TV | PWLS-SPAD |
---|---|---|---|---|
SSIM | 0.622500 | 0.786073 | 0.783700 | 0.810993 |
FSIM | 0.840642 | 0.865528 | 0.882331 | 0.919254 |
1 | Vliegenthart R, Fouras A, Jacobs C, et al. Innovations in thoracic imaging: CT, radiomics, AI and X-ray velocimetry[J]. Respirology, 2022, 27(10): 818-33. |
2 | Bonney A, Malouf R, Marchal C, et al. Impact of low-dose computed tomography (LDCT) screening on lung cancer-related mortality[J]. Cochrane Database Syst Rev, 2022, 8(8): CD013829. |
3 | Gillies RJ, Schabath MB. Radiomics improves cancer screening and early detection[J]. Cancer Epidemiol Biomark Prev, 2020, 29(12): 2556-67. |
4 | 牛善洲, 唐诗洲, 黄舒彦, et al. 基于高维PDE投影恢复的低剂量CT重建方法 [J]. 南方医科大学学报, 2024, 44(4): 682-8. |
5 | Zhang H, Wang J, Zeng D, et al. Regularization strategies in statistical image reconstruction of low-dose X-ray CT: a review[J]. Med Phys, 2018, 45(10): e886-e907. |
6 | 邸江磊, et al. 基于深度学习的稀疏或有限角度CT重建方法研究综述 [J]. 激光与光电子学进展, 2023, 60(8): 42-79. |
7 | 牛善洲, 梁礼境, 李 硕, et al. 基于低维流形先验的低剂量CT重建方法[J]. 计算机工程与应用, 2023, 59(18): 242-8. |
8 | 李进丹, 陈 龙, 杨聪慧, et al. 低剂量PET/CT及PET/MRI临床研究进展[J]. 中国医学影像技术, 2021, 37(11): 1740-3. |
9 | 陈世宣, 曾栋, 边兆英, et al. 基于联邦特征学习的多机型低剂量CT重建算法 [J]. 南方医科大学学报, 2024, 44(2): 333-43. |
10 | Yang SH, Pu Q, Lei CT, et al. Low-dose CT denoising with a high-level feature refinement and dynamic convolution network[J]. Med Phys, 2023, 50(6): 3597-611. |
11 | Wu DF, Kim K, El Fakhri G, et al. Iterative low-dose CT reconstruction with priors trained by artificial neural network[J]. IEEE Trans Med Imaging, 2017, 36(12): 2479-86. |
12 | Zhang H, Ma JH, Wang J, et al. Statistical image reconstruction for low-dose CT using nonlocal means-based regularization. Part II: an adaptive approach[J]. Comput Med Imaging Graph, 2015, 43: 26-35. |
13 | Zhang H, Ma JH, Wang J, et al. Statistical image reconstruction for low-dose CT using nonlocal means-based regularization. Part II: an adaptive approach[J]. Comput Med Imaging Graph, 2015, 43: 26-35. |
14 | Niu SZ, Liu H, Zhang MZ, et al. Iterative reconstruction for low-dose cerebral perfusion computed tomography using prior image induced diffusion tensor[J]. Phys Med Biol, 2021, 66(11): 1150-24. |
15 | Wang J, Li TF, Lu HB, et al. Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography[J]. IEEE Trans Med Imaging, 2006, 25(10): 1272-83. |
16 | Wang J, Lu HB, Wen JH, et al. Multiscale penalized weighted least-squares sinogram restoration for low-dose X-ray computed tomography[J]. IEEE Trans Biomed Eng, 2008, 55(3): 1022-31. |
17 | 张心如, 周先春, 汪志飞, et al. 基于改进各向异性扩散的图像去噪算法 [J]. 电子测量技术, 2022, 45(17): 113-9. |
18 | Guo YH, Cheng HD. Image noise removal approach based on subpixel anisotropic diffusion[J]. J Electron Imaging, 2012, 21(3): 033026-1. |
19 | Zhang HJ, Zeng D, Lin JH, et al. Iterative reconstruction for dual energy CT with an average image-induced nonlocal means regularization[J]. Phys Med Biol, 2017, 62(13): 5556-74. |
20 | Huang J, Zhang YW, Ma JH, et al. Iterative image reconstruction for sparse-view CT using normal-dose image induced total variation prior[J]. PLoS One, 2013, 8(11): e79709. |
21 | Zhang HW, Zhang PC, Cheng WT, et al. Learnable PM diffusion coefficients and reformative coordinate attention network for low dose CT denoising[J]. Phys Med Biol, 2023, 68(24): Physicsinmedi-cineandbiologyvol.68, 2410.1088/1361-6560/aced33.11Dec.2023, . |
22 | Wang J, Guan HQ, Solberg T. Inverse determination of the penalty parameter in penalized weighted least-squares algorithm for noise reduction of low-dose CBCT[J]. Med Phys, 2011, 38(7): 4066-72. |
23 | Liu Y, Ma JH, Fan Y, et al. Adaptive-weighted total variation minimization for sparse data toward low-dose X-ray computed tomography image reconstruction[J]. Phys Med Biol, 2012, 57(23): 7923-56. |
24 | 牛善洲, 刘宏, 朱赟, et al. 基于广义惩罚加权最小二乘的低剂量CT重建方法 [J]. 数值计算与计算机应用, 2021, 42(3): 289-302. DOI: 10.12288/szjs.s2020-0671 |
25 | 牛善洲, 张梦真, 邱 洋, et al. 基于全广义变分约束加权最小二乘的低剂量计算机断层重建方法[J]. 激光与光电子学进展, 2023, 60(4): 3788/LOP212853. DOI: 10.3788/LOP212853 |
26 | Zhang H, Capaldi D, Zeng D, et al. Prior-image-based CT reconstruction using attenuation-mismatched priors[J]. Phys Med Biol, 2021, 66(6): 064007. |
27 | Zhang L, Zhang L, Mou XQ, et al. FSIM: a feature similarity index for image quality assessment[J]. IEEE Trans Image Process, 2011, 20(8): 2378-86. |
28 | Tsai MY, Liang HL, Chuo CC, et al. A novel protocol for abdominal low-dose CT scans adapted with a model-based iterative reconstruction method[J]. J Xray Sci Technol, 2023, 31(3): 453-61. |
29 | Wilson DO. Is there more to low dose CT scans[J]? Chest, 2022, 161(4): 880-1. |
30 | Sun T, Sun NB, Wang J, et al. Iterative CBCT reconstruction using Hessian penalty[J]. Phys Med Biol, 2015, 60(5): 1965-87. |
31 | Niu S, Bian Z, Zeng D, et al. Total image constrained diffusion tensor for spectral computed tomography reconstruction[J]. Applied Mathematical Modelling, 2019, 68: 487-508. |
32 | Niu SZ, Zhang MZ, Qiu Y, et al. Evaluation of low-dose computed tomography reconstruction using spatial-radon domain total generalized variation regularization[J]. Phys Med Biol, 2024, 69(10): 1050-05. |
[1] | NIU Shanzhou, TANG Shizhou, HUANG Shuyan, LIANG Lijing, LI Shuo, LIU Hanming. Low-dose CT reconstruction based on high-dimensional partial differential equation projection recovery [J]. Journal of Southern Medical University, 2024, 44(4): 682-688. |
[2] | CHEN Shixuan, ZENG Dong, BIAN Zhaoying, MA Jianhua. A low-dose CT reconstruction algorithm across different scanners based on federated feature learning [J]. Journal of Southern Medical University, 2024, 44(2): 333-343. |
[3] | WANG Hailong, LIN Guoqin, DUAN Xiaoman, QI Mengke, WU Wangjiang, MA Jianhui, XU Yuan. A method for sensitivity analysis of deviation factor for geometric correction of cone-beam CT system [J]. Journal of Southern Medical University, 2023, 43(7): 1233-1240. |
[4] | SI Wenbin, FENG Yanqiu. A multi-channel input convolutional neural network for artifact reduction in quantitative susceptibility mapping [J]. Journal of Southern Medical University, 2022, 42(12): 1799-1806. |
[5] | HUANG Jinhong, ZHOU Genjiao, YU Zefeng, HU Wenyu. Deep parallel MRI reconstruction based on a complex-valued loss function [J]. Journal of Southern Medical University, 2022, 42(12): 1755-1764. |
[6] | . Super-resolution construction of intravascular ultrasound images using generative adversarial networks [J]. Journal of Southern Medical University, 2019, 39(01): 82-. |
[7] | . Design and optimization of a cone-beam CT system for extremity imaging [J]. Journal of Southern Medical University, 2018, 38(11): 1331-. |
[8] | . Super-resolution reconstruction of lung 4D-CT images based on fast sub-pixel motion estimation [J]. Journal of Southern Medical University, 2015, 35(07): 1034-. |
[9] | . Cone beam CT image iterative reconstruction based on Split-Bregman method [J]. Journal of Southern Medical University, 2014, 34(06): 783-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||