Journal of Southern Medical University ›› 2021, Vol. 41 ›› Issue (5): 754-759.doi: 10.12122/j.issn.1673-4254.2021.05.17
Previous Articles Next Articles
Online:
Published:
Abstract: Objective To investigate the anatomy of the perforator vessels of the deep circumflex iliac artery (DCIA) and the techniques for repairing mandibular complex defect using chimeric deep circumflex iliac artery perforator flap (DCIAPF). Methods We analyzed the origin, distribution, number and courses of the perforator vessels of the DCIA, and measured the outside diameters of the vessels at the origin in 6 adult cadaveric specimens (12 sides) with latex perfusion. From July, 2018 to September, 2019, based on the results of anatomical study and imaging findings and using the digital surgical guide plate, we harvested DCIAPF from 4 patients for repairing mandibular body or angle defects and oral soft tissue defects. Results The perforating vessels of the DCIA included abdominal muscular branches, osteomusculocutaneous branches and terminal musculocutaneous branches. The abdominal muscle branches originated from the DCIA inguinal segment in 4 and from botht he inguinal and iliac segments in 2 of the specimens. The osteomusculocutaneous branches all originated from the internal iliac crest in 75% and from both the inguinal and internal iliac crest segments in 25% of cases; the inguinal segment gave rise to only one perforating branch. The number of the musculocutaneous perforating branches was 1 (58.3% ) or 2 (41.7% ). In the 4 patients undergoing mandibular reconstruction, the DCIAPF survived in all cases with good recovery of the donor site wound. Satisfactory facial appearance with good oral morphology and occlusal relationship was achieved at 1 month postoperatively in all the patients. None of the patients experienced obvious functional abnormalities at the donor site, and imaging examination confirmed successful reconstruction of the oromandibular defects in all the cases. Conclusion A good understanding of the anatomic characteristics of the perforator vessels of the DCIA combined with imaging examinations and digital surgery technology facilitates the harvest of DCIAPF for repairing mandibular body or angle defects complicated by oral soft tissue defects.
Key words: deep circumflex iliac artery; chimeric perforator flap; mandibular defect; digital surgery; reconstruction
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2021.05.17
https://www.j-smu.com/EN/Y2021/V41/I5/754