Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (4): 760-764.doi: 10.12122/j.issn.1673-4254.2025.04.11
Yuancheng CHEN(), Wen WU, Ling XU, Haiou DENG, Ruixue WANG, Qianwen HUANG, Liping XUAN, Xueying CHEN, Ximei ZHI(
)
Received:
2025-01-13
Online:
2025-04-20
Published:
2025-04-28
Contact:
Ximei ZHI
E-mail:yuanchengchen21@163.com;13533549225@139.com
Yuancheng CHEN, Wen WU, Ling XU, Haiou DENG, Ruixue WANG, Qianwen HUANG, Liping XUAN, Xueying CHEN, Ximei ZHI. Changes in circulating levels of calcium and bone metabolism biochemical markers in patients receiving denosumab treatment[J]. Journal of Southern Medical University, 2025, 45(4): 760-764.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.04.11
n | Gender (male/female) | Age (year) | Blood calcium (mmol/L) | 25 (OH)D (ng/mL) | PTH (pg/mL) | OC (ng/mL) | PⅠNP (ng/mL) | β-CTX (ng/mL) |
---|---|---|---|---|---|---|---|---|
73 | 5/68 | 69.47±12.18 | 2.37±0.10 | 32.23±12.35 | 41.02±15.56 | 17.87±7.45 | 50.31±28.22 | 0.43±0.22 |
Tab.1 Baseline clinical data of the patients enrolled (Mean±SD)
n | Gender (male/female) | Age (year) | Blood calcium (mmol/L) | 25 (OH)D (ng/mL) | PTH (pg/mL) | OC (ng/mL) | PⅠNP (ng/mL) | β-CTX (ng/mL) |
---|---|---|---|---|---|---|---|---|
73 | 5/68 | 69.47±12.18 | 2.37±0.10 | 32.23±12.35 | 41.02±15.56 | 17.87±7.45 | 50.31±28.22 | 0.43±0.22 |
Clinical characteristics | Baseline | 3 months | t | P |
---|---|---|---|---|
Blood calcium (mmol/L) | 2.349±0.101 | 2.300±0.116 | 2.456 | 0.020 |
PTH (pg/mL) | 44.066±14.920 | 57.616±35.192 | -2.459 | 0.022 |
OC (ng/mL) | 18.023±8.014 | 10.901±3.984 | 5.879 | <0.001 |
PⅠNP (ng/mL) | 52.476±27.578 | 22.980±19.681 | 5.814 | <0.001 |
β-CTX (ng/mL) | 0.473±0.234 | 0.086±0.086 | 8.017 | <0.001 |
Tab.2 Changes in blood calcium and bone metabolic markers at 3 months after the first treatment (Mean±SD, n=25)
Clinical characteristics | Baseline | 3 months | t | P |
---|---|---|---|---|
Blood calcium (mmol/L) | 2.349±0.101 | 2.300±0.116 | 2.456 | 0.020 |
PTH (pg/mL) | 44.066±14.920 | 57.616±35.192 | -2.459 | 0.022 |
OC (ng/mL) | 18.023±8.014 | 10.901±3.984 | 5.879 | <0.001 |
PⅠNP (ng/mL) | 52.476±27.578 | 22.980±19.681 | 5.814 | <0.001 |
β-CTX (ng/mL) | 0.473±0.234 | 0.086±0.086 | 8.017 | <0.001 |
Clinical characteristics | Baseline | 6 months | t | P |
---|---|---|---|---|
Blood calcium (mmol/L) | 2.366±0.983 | 2.368±0.100 | -0.171 | 0.865 |
PTH (pg/mL) | 40.802±17.194 | 44.467±18.090 | -1.843 | 0.071 |
OC (ng/mL) | 17.563±7.868 | 9.208±3.019 | 9.329 | <0.001 |
PⅠNP (ng/mL) | 50.260±30.041 | 20.274±15.395 | 7.665 | <0.001 |
β-CTX (ng/mL) | 0.423±0.238 | 0.107±0.830 | 9.461 | <0.001 |
Tab.3 Changes in blood calcium and bone metabolic markers at 6 months after the first treatment (Mean±SD, n=25)
Clinical characteristics | Baseline | 6 months | t | P |
---|---|---|---|---|
Blood calcium (mmol/L) | 2.366±0.983 | 2.368±0.100 | -0.171 | 0.865 |
PTH (pg/mL) | 40.802±17.194 | 44.467±18.090 | -1.843 | 0.071 |
OC (ng/mL) | 17.563±7.868 | 9.208±3.019 | 9.329 | <0.001 |
PⅠNP (ng/mL) | 50.260±30.041 | 20.274±15.395 | 7.665 | <0.001 |
β-CTX (ng/mL) | 0.423±0.238 | 0.107±0.830 | 9.461 | <0.001 |
Clinical characteristics | Baseline | 9 months | t | P |
---|---|---|---|---|
Blood calcium (mmol/L) | 2.373±0.101 | 2.350±0.144 | 0.632 | 0.537 |
PTH (pg/mL) | 40.892±15.590 | 44.801±24.792 | -1.009 | 0.329 |
OC (ng/mL) | 15.782±5.336 | 8.049±2.390 | 6.374 | <0.001 |
PⅠNP (ng/mL) | 42.189±4.17 | 15.669±10.296 | 5.707 | <0.001 |
β-CTX (ng/mL) | 0.376±0.194 | 0.061±0.042 | 6.535 | <0.001 |
Tab.4 Changes in blood calcium and bone metabolic markers at 9 months after the first treatment (Mean±SD, n=16)
Clinical characteristics | Baseline | 9 months | t | P |
---|---|---|---|---|
Blood calcium (mmol/L) | 2.373±0.101 | 2.350±0.144 | 0.632 | 0.537 |
PTH (pg/mL) | 40.892±15.590 | 44.801±24.792 | -1.009 | 0.329 |
OC (ng/mL) | 15.782±5.336 | 8.049±2.390 | 6.374 | <0.001 |
PⅠNP (ng/mL) | 42.189±4.17 | 15.669±10.296 | 5.707 | <0.001 |
β-CTX (ng/mL) | 0.376±0.194 | 0.061±0.042 | 6.535 | <0.001 |
Clinical characteristics | Baseline | 12 mouths | t | P |
---|---|---|---|---|
Blood calcium (mmol/L) | 2.394±0.093 | 2.368±0.090 | 1.112 | 0.275 |
PTH (pg/mL) | 40.047±12.666 | 45.383±20.601 | -1.537 | 0.135 |
OC (ng/mL) | 17.713±6.448 | 9.107±1.913 | 7.873 | <0.001 |
PⅠNP (ng/mL) | 45.793±22.297 | 17.413±10.616 | 6.679 | <0.001 |
β-CTX (ng/mL) | 0.444±0.227 | 0.083±0.060 | 8.868 | <0.001 |
Tab.5 Changes in blood calcium and bone metabolic markers at 12 months of treatment (Mean±SD, n=30)
Clinical characteristics | Baseline | 12 mouths | t | P |
---|---|---|---|---|
Blood calcium (mmol/L) | 2.394±0.093 | 2.368±0.090 | 1.112 | 0.275 |
PTH (pg/mL) | 40.047±12.666 | 45.383±20.601 | -1.537 | 0.135 |
OC (ng/mL) | 17.713±6.448 | 9.107±1.913 | 7.873 | <0.001 |
PⅠNP (ng/mL) | 45.793±22.297 | 17.413±10.616 | 6.679 | <0.001 |
β-CTX (ng/mL) | 0.444±0.227 | 0.083±0.060 | 8.868 | <0.001 |
1 | Wang LH, Yu W, Yin XJ, et al. Prevalence of osteoporosis and fracture in China: the China osteoporosis prevalence study[J]. JAMA Netw Open, 2021, 4(8): e2121106. |
2 | 中华医学会骨质疏松和骨矿盐疾病分会. 原发性骨质疏松症诊疗指南(2022)[J]. 中华骨质疏松和骨矿盐疾病杂志, 2022, 15(6): 573-611. |
3 | 《中国骨质疏松杂志》骨代谢专家组, 张萌萌, 马倩倩, 等. 骨代谢生化指标临床应用专家共识(2023修订版)[J]. 中国骨质疏松杂志, 2023, 29(4): 469-76. |
4 | Lorentzon M, Branco J, Brandi ML, et al. Algorithm for the use of biochemical markers of bone turnover in the diagnosis, assessment and follow-up of treatment for osteoporosis[J]. Adv Ther, 2019, 36(10): 2811-24. |
5 | 中华医学会骨质疏松和骨矿盐疾病分会. 骨转换生化标志物临床应用指南[J]. 中华内分泌代谢杂志, 2021, 37(10): 863-74. |
6 | Wu CH, Chang YF, Chen CH, et al. Consensus statement on the use of bone turnover markers for short-term monitoring of osteoporosis treatment in the Asia-Pacific Region[J]. J Clin Densitom, 2021, 24(1): 3-13. |
7 | Langdahl BL. Overview of treatment approaches to osteoporosis[J]. Br J Pharmacol, 2021, 178(9): 1891-906. |
8 | Cummings SR, Martin JS, McClung MR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis[J]. N Engl J Med, 2009, 361(8): 756-65. |
9 | Anastasilakis AD, Polyzos SA, Makras P, et al. Circulating noggin levels following treatment with denosumab or teriparatide in postmenopausal women with low bone mass[J]. J Musculoskelet Neuronal Interact, 2019, 19(3): 253-7. |
10 | Cianciolo G, Tondolo F, Barbuto S, et al. Denosumab-induced hypocalcemia and hyperparathyroidism in de novo kidney transplant recipients[J]. Am J Nephrol, 2021, 52(8): 611-9. |
11 | 李小霜, 孙 娟, 何苗苗, 等. 地舒单抗与唑来膦酸治疗绝经后骨质疏松症的疗效对比研究[J]. 医学研究杂志, 2023, 52(7): 147-52. |
12 | 张春萍, 武传芝, 程德海. 地舒单抗联合唑来膦酸钠治疗老年骨质疏松症患者的效果及对骨密度、骨代谢指标及炎症因子的影响[J]. 四川解剖学杂志, 2022, 30(4): 114-6, 120. |
13 | Anastasilakis AD, Polyzos SA, Efstathiadou ZA, et al. Denosumab in treatment-naïve and pre-treated with zoledronic acid postmeno-pausal women with low bone mass: Effect on bone mineral density and bone turnover markers[J]. Metabolism, 2015, 64(10): 1291-7. |
14 | Bone HG, Bolognese MA, Yuen CK, et al. Effects of denosumab treatment and discontinuation on bone mineral density and bone turnover markers in postmenopausal women with low bone mass[J]. J Clin Endocrinol Metab, 2011, 96(4): 972-80. |
15 | Yoo JI, Park SY, Kim DY, et al. Effectiveness and usefulness of bone turnover marker in osteoporosis patients: a multicenter study in Korea[J]. J Bone Metab, 2023, 30(4): 311-7. |
16 | Kendler DL, Cosman F, Stad RK, et al. Denosumab in the treatment of osteoporosis: 10Years later: a narrative review[J]. Adv Ther, 2022, 39(1): 58-74. |
17 | Bone HG, Wagman RB, Brandi ML, et al. 10 years of denosumab treatment in postmenopausal women with osteoporosis: results from the phase 3 randomised FREEDOM trial and open-label extension[J]. Lancet Diabetes Endocrinol, 2017, 5(7): 513-23. |
18 | Pang KL, Low NY, Chin KY. A review on the role of denosumab in fracture prevention[J]. Drug Des Devel Ther, 2020, 14: 4029-51. |
19 | Portal-Núñez S, Mediero A, Esbrit P, et al. Unexpected bone formation produced by RANKL blockade[J]. Trends Endocrinol Metab, 2017, 28(10): 695-704. |
20 | Dempster DW, Zhou H, Recker RR, et al. Remodeling- and modeling-based bone formation with teriparatide versus denosumab: a longitudinal analysis from baseline to 3 months in the AVA study[J]. J Bone Miner Res, 2018, 33(2): 298-306. |
21 | Chavassieux P, Portero-Muzy N, Roux JP, et al. Reduction of cortical bone turnover and erosion depth after 2 and 3 years of denosumab: iliac bone histomorphometry in the FREEDOM trial[J]. J Bone Miner Res, 2019, 34(4): 626-31. |
22 | Hanley DA, Adachi JD, Bell A, et al. Denosumab: mechanism of action and clinical outcomes[J]. Int J Clin Pract, 2012, 66(12): 1139-46. |
23 | Ferrari S, Langdahl B. Mechanisms underlying the long-term and withdrawal effects of denosumab therapy on bone[J]. Nat Rev Rheumatol, 2023, 19(5): 307-17. |
24 | Diab DL, Watts NB. The use of denosumab in osteoporosis - an update on efficacy and drug safety[J]. Expert Opin Drug Saf, 2024, 23(9): 1069-77. |
25 | Camacho PM, Petak SM, Binkley N, et al. American association of clinical endocrinologists/American college of endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis-2020 update[J]. Endocr Pract, 2020, 26(): 1-46. |
26 | 中华医学会骨质疏松和骨矿盐疾病分会. 维生素D及其类似物临床应用共识[J]. 协和医学杂志, 2018, 9(2): 127-43. |
27 | Mosali P, Bernard L, Wajed J, et al. Vitamin D status and parathyroid hormone concentrations influence the skeletal response to zoledro-nate and denosumab[J]. Calcif Tissue Int, 2014, 94(5): 553-9. |
28 | Makras P, Polyzos SA, Papatheodorou A, et al. Parathyroid hormone changes following denosumab treatment in postmenopausal osteoporosis[J]. Clin Endocrinol, 2013, 79(4): 499-503. |
29 | Bekker PJ, Holloway DL, Rasmussen AS, et al. A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women[J]. J Bone Miner Res, 2004, 19(7): 1059-66. |
30 | Nakamura Y, Kamimura M, Ikegami S, et al. Changes in serum vitamin D and PTH values using denosumab with or without bisphosphonate pre-treatment in osteoporotic patients: a short-term study[J]. BMC Endocr Disord, 2015, 15: 81. |
31 | Augoulea A, Tsakonas E, Triantafyllopoulos I, et al. Comparative effects of denosumab or bisphosphonate treatment on bone mineral density and calcium metabolism in postmenopausal women[J]. J Musculoskelet Neuronal Interact, 2017, 17(1): 444-9. |
32 | Ishikawa K, Nagai T, Sakamoto K, et al. High bone turnover elevates the risk of denosumab-induced hypocalcemia in women with postmenopausal osteoporosis[J]. Ther Clin Risk Manag, 2016, 12: 1831-40. |
33 | Tsvetov G, Amitai O, Shochat T, et al. Denosumab-induced hypocalcemia in patients with osteoporosis: can you know who will get low[J]? Osteoporos Int, 2020, 31(4): 655-65. |
[1] | Ying ZHOU, Danyang ZHANG, Lifan WU, Guishan WANG, Jiedan MU, Chengwen CUI, Xiuxiu SHI, Jige DONG, Yu WANG, Wangli XU, Xiao LI. Epidemiological survey of osteoporosis in Beijing over the past decade: a single-center analysis of dual-energy X-ray absorptiometry scans from 30 599 individuals [J]. Journal of Southern Medical University, 2025, 45(3): 443-452. |
[2] | LUO Caizhu, CHEN Jinxiang, ZHANG Qun, YU Xuezhao, ZHANG Shuqin. A polylactic acid/hydroxyapatite/scholzite composite scaffold for promoting healing of osteoporotic bone defects in rats [J]. Journal of Southern Medical University, 2024, 44(2): 370-380. |
[3] | CHEN Zifeng, LI Shengfa, ZHANG Youming, YANG Wanwen, WANG Ting. Lipocalin 2 induces self- limited inhibition of osteoblast differentiation of mesenchymal stem cells [J]. Journal of Southern Medical University, 2023, 43(8): 1339-1344. |
[4] | LIU lidan, QIAN Liyuan, LI Peiting, LI Jun, HUANG Shan, YI Wenjun, LIU Shuagnxi, WU Wei. MiR-301a-5p modulates parathyroid hormone secretion in secondary hyperparathyroidism possibly by regulating calcium-sensing receptor [J]. Journal of Southern Medical University, 2023, 43(8): 1363-1370. |
[5] | WU Xiuhua, FAN Yingjing, YE Yongnong, LI Ping, ZHU Qing'an, CHEN Zesen, LI Bo, WANG Wen, ZHENG Lei. A transcriptomic study of osteoporosis induced by ketogenic diet in mice [J]. Journal of Southern Medical University, 2023, 43(8): 1440-1446. |
[6] | RUAN Hongliang, SHE Dongmei, SUN Shaoqiu. Liuwei Dihuang Pills alleviates postmenopausal osteoporosis and fatigue in rats by inhibiting the epigenetic regulatory molecule BRD4 pathway [J]. Journal of Southern Medical University, 2023, 43(12): 1998-2005. |
[7] | JIN Xiaoli, XU Jia, CHEN Xuanwei, CHEN Jin, HUANG Hui, ZHANG Ting, REN Jun, XU Jian. Oridonin suppresses the effect of thioacetamide for promoting osteoclast differentiation of RAW264.7 cells and inhibiting osteoblast differentiation of bone mesenchymal stem cells [J]. Journal of Southern Medical University, 2023, 43(11): 1892-1900. |
[8] | HOU Tian, QIN Yazhi, ZHANG Yan, WEN Guochen, QI Mengchun, DONG Wei. Teriparatide regulates osteoblast differentiation in high-glucose microenvironment through the cAMP/PKA/CREB signaling pathway [J]. Journal of Southern Medical University, 2023, 43(1): 39-45. |
[9] | JIANG Han, LI Peiting, LIU Lidan, HUANG Shan, LI Jun, WU Wei. Identification of microRNAs targeting vitamin D receptor and their effect on parathyroid hormone secretion in secondary hyperparathyroidism [J]. Journal of Southern Medical University, 2022, 42(4): 509-517. |
[10] | LI Peiting, LI Gang, LIU Lidan, HUANG Shan, LI Jun, WU Wei. Cultivation and characterization of primary human parathyroid cells from patients with severe secondary hyperparathyroidism [J]. Journal of Southern Medical University, 2022, 42(2): 238-243. |
[11] | FENG Yuanyi, YANG Dongmei, ZHI Ximei, DENG Haiou, ZHANG Weijie, WANG Ruixue, WU Wen. Role of interaction between reactive oxygen species and ferroptosis pathway in methylglyoxal-induced injury in mouse embryonic osteoblasts [J]. Journal of Southern Medical University, 2022, 42(1): 108-115. |
[12] | . Parathyroid hormone-related protein aggravates nonalcoholic fatty liver disease induced by methionine choline-deficient diet in mice [J]. Journal of Southern Medical University, 2021, 41(7): 1037-1043. |
[13] | CHENG Dongliang, FENG Hongmei, WEN Ge, LIU Jiangpin, HONG Julu, GAO Mingyong. Value of a nomogram model based on IDEAL-IQ for predicting early bone mass loss [J]. Journal of Southern Medical University, 2021, 41(11): 1707-1711. |
[14] |
.
Kcnq1ot1 promotes osteogenic differentiation and suppresses osteoclast differentiation
[J]. Journal of Southern Medical University, 2021, 41(1): 31-38.
|
[15] | . Prolonged continuous infusion of teriparatide promotes bone metabolism in normal but not in castrated mice [J]. Journal of Southern Medical University, 2019, 39(09): 1045-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||