Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (2): 437-442.doi: 10.12122/j.issn.1673-4254.2025.02.24
Zhengming SUN1,2(), Kun ZUO3, Xinke ZHU1,2, Hao YUE1,2, Zhengchao GAO1,2
Received:
2024-12-06
Online:
2025-02-20
Published:
2025-03-03
Supported by:
Zhengming SUN, Kun ZUO, Xinke ZHU, Hao YUE, Zhengchao GAO. Latest research progress of rare earth-magnesium alloys in orthopedics[J]. Journal of Southern Medical University, 2025, 45(2): 437-442.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.02.24
1 | Sukegawa S, Masui M, Sukegawa-Takahashi Y, et al. Maxillofacial trauma surgery patients with titanium osteosynthesis miniplates: remove or not [J]? J Craniofac Surg, 2020, 31(5): 1338-42. |
2 | AlOmran AK, Alosaimi N, Alshaikhi AA, et al. Burden of routine orthopedic implant removal a single center retrospective study[J]. World J Orthop, 2024, 15(2): 139-46. |
3 | Yang L, Liu LJ, Yang XD, et al. Analysis of risk factors for difficult implant removal in children with slipped capital femoral epiphysis treated by cannulated screws[J]. Front Pediatr, 2024, 12: 1414557. |
4 | 彭 芃, 傅 媛, 邱俊雄, 等. RIPK3在磨损颗粒激活巨噬细胞PRRs/NLRP3信号通路引起人工关节无菌性松动中的作用机制[J]. 中国科学: 生命科学, 2020, 50(10): 1121-31. |
5 | Lhotka C, Szekeres T, Steffan I, et al. Four-year study of cobalt and chromium blood levels in patients managed with two different metal-on-metal total hip replacements[J]. J Orthop Res, 2003, 21(2): 189-95. |
6 | Zhou KX, Wang MF, Zhang S, et al. Titanium alloys for orthopedic applications: a review on the osteointegration induced by physicomechanical stimuli[J]. J Mater Res Technol, 2024, 30: 8260-76. |
7 | 郑玉峰, 吴远浩. 处在变革中的医用金属材料[J]. 金属学报, 2017, 53(3): 257-97. DOI: 10.11900/0412.1961.2016.00529 |
8 | Rehman M, Madni A, Webster TJ. The era of biofunctional biomaterials in orthopedics: what does the future hold[J]? Expert Rev Med Devices, 2018, 15(3): 193-204. |
9 | 尹 林, 黄 华, 袁广银, 等. 可降解镁合金临床应用的最新研究进展[J]. 中国材料进展, 2019, 38(2): 126-37. |
10 | Rout PK, Roy S, Ganguly S, et al. A review on properties of magnesium-based alloys for biomedical applications[J]. Biomed Phys Eng Express, 2022, 8(4): 042002. |
11 | Kamrani S, Fleck C. Biodegradable magnesium alloys as temporary orthopaedic implants: a review[J]. Biometals, 2019, 32(2): 185-93. |
12 | Dong JH, Lin T, Shao HP, et al. Advances in degradation behavior of biomedical magnesium alloys: a review[J]. J Alloys Compd, 2022, 908: 164600. |
13 | Song GL, Atrens A. Corrosion mechanisms of magnesium alloys[J]. Adv Eng Mater, 1999, 1(1): 11-33. |
14 | Feeney KA, Hansen LL, Putker M, et al. Daily magnesium fluxes regulate cellular timekeeping and energy balance[J]. Nature, 2016, 532(7599): 375-9. |
15 | 袁广银, 牛佳林. 可降解医用镁合金在骨修复应用中的研究进展[J]. 金属学报, 2017, 53(10): 1168-80. |
16 | Zhou Y, Zhang AX, Wu JB, et al. Application and perspectives: magnesium materials in bone regeneration[J]. ACS Biomater Sci Eng, 2024, 10(6): 3514-27. |
17 | Rondanelli M, Faliva MA, Tartara A, et al. An update on magnesium and bone health[J]. Biometals, 2021, 34(4): 715-36. |
18 | Groenendijk I, van Delft M, Versloot P, et al. Impact of magnesium on bone health in older adults: a systematic review and meta-analysis[J]. Bone, 2022, 154: 116233. |
19 | Gusieva K, Davies CHJ, Scully JR, et al. Corrosion of magnesium alloys: the role of alloying[J]. Int Mater Rev, 2015, 60(3): 169-94. |
20 | Pogorielov M, Husak E, Solodivnik A, et al. Magnesium-based biodegradable alloys: degradation, application, and alloying elements[J]. Interv Med Appl Sci, 2017, 9(1): 27-38. |
21 | Kumar K, Gill RS, Batra U. Challenges and opportunities for biodegradable magnesium alloy implants[J]. Mater Technol, 2018, 33(2): 153-72. |
22 | Amukarimi S, Mozafari M. Biodegradable magnesium-based biomaterials: an overview of challenges and opportunities[J]. MedComm, 2021, 2(2): 123-44. |
23 | 郑玉峰, 刘嘉宁. 从可降解金属的角度审视医用镁合金的元素选择[J]. 中国材料进展, 2020, 39(2): 92-9, 112. |
24 | Chen Y, Dou JH, Yu HJ, et al. Degradable magnesium-based alloys for biomedical applications: the role of critical alloying elements[J]. J Biomater Appl, 2019, 33(10): 1348-72. |
25 | Lu Y, Deshmukh S, Jones I, et al. Biodegradable magnesium alloys for orthopaedic applications[J]. Biomater Transl, 2021, 2(3): 214-35. |
26 | Wang JL, Xu JK, Hopkins C, et al. Biodegradable magnesium-based implants in orthopedics-a general review and perspectives[J]. Adv Sci, 2020, 7(8): 1902443. |
27 | Mirza A, King A, Troakes C, et al. Aluminium in brain tissue in familial Alzheimer’s disease[J]. J Trace Elem Med Biol, 2017, 40: 30-6. |
28 | Mold MJ, O’Farrell A, Morris B, et al. Aluminum and neurofibrillary tangle co-localization in familial Alzheimer’s disease and related neurological disorders[J]. J Alzheimers Dis, 2020, 78(1): 139-49. |
29 | Willbold E, Gu XN, Albert D, et al. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium[J]. Acta Biomater, 2015, 11: 554-62. |
30 | Liu JN, Bian D, Zheng YF, et al. Comparative in vitro study on binary Mg-RE (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) alloy systems[J]. Acta Biomater, 2020, 102: 508-28. |
31 | Weng WJ, Biesiekierski A, Li YC, et al. A review of the physiological impact of rare earth elements and their uses in biomedical Mg alloys[J]. Acta Biomater, 2021, 130: 80-97. |
32 | Li HF, Wang PY, Lin GC, et al. The role of rare earth elements in biodegradable metals: a review[J]. Acta Biomater, 2021, 129: 33-42. |
33 | Evans CH. Toxicology and pharmacology of the lanthanides[M]//Biochemistry of the Lanthanides. Boston, MA: Springer US, 1990: 339-89. |
34 | Jing HM, Wu XQ, Liu YQ, et al. Antibacterial property of Ce-bearing stainless steels[J]. J Mater Sci, 2007, 42(13): 5118-22. |
35 | Tang YB, Zhang XN, Liu SL, et al. Multifunctional rare earth oxide/MBG composite microspheres as a carrier for bone tumor treatment[J]. J Alloys Compd, 2024, 993: 174603. |
36 | Wang JY, Li S. Applications of rare earth elements in cancer: Evidence mapping and scientometric analysis[J]. Front Med, 2022, 9: 946100. |
37 | Rim KT. Effects of rare earth elements on the environment and human health: a literature review[J]. Toxicol Environ Health Sci, 2016, 8(3): 189-200. |
38 | Feyerabend F, Fischer J, Holtz J, et al. Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines[J]. Acta Biomater, 2010, 6(5): 1834-42. |
39 | 曾小勤, 陈义文, 王静雅, 等. 高性能稀土镁合金研究新进展[J]. 中国有色金属学报, 2021, 31(11): 2963-75. |
40 | Zhao PY, Xie T, Xu XM, et al. Designing high corrosion resistant peritectic magnesium alloys via Sc and Y addition[J]. Metall Mater Trans A, 2020, 51(5): 2509-22. |
41 | Xie J, Zhang J, You Z, et al. Towards developing Mg alloys with simultaneously improved strength and corrosion resistance via RE alloying[J]. JMA, 2021, 9(1):41-56. |
42 | Zhou XH, Huang YW, Wei ZL, et al. Improvement of corrosion resistance of AZ91D magnesium alloy by holmium addition[J]. Corros Sci, 2006, 48(12): 4223-33. |
43 | Zheng YF, Gu XN, Witte F. Biodegradable metals[J]. Mater Sci Eng R Rep, 2014, 77: 1-34. |
44 | Zhang XB, Yuan GY, Mao L, et al. Biocorrosion properties of as-extruded Mg-Nd-Zn-Zr alloy compared with commercial AZ31 and WE43 alloys[J]. Mater Lett, 2012, 66(1): 209-11. |
45 | Yin GY, Zhang XB, Nin JL, et al. Research progress of new type of degradable biomedical magnesium alloys JDBM[J]. Chin J Nonferrous Metals, 2011, 21(10):2476-88. |
46 | Li WX, Wang LY, Zhou BJ, et al. Grain-scale deformation in a Mg-0.8 wt% Y alloy using crystal plasticity finite element method[J]. J Mater Sci Technol, 2019, 35(10): 2200-6. |
47 | 袁广银, 章晓波, 牛佳林, 等. 新型可降解生物医用镁合金JDBM的研究进展[J]. 中国有色金属学报, 2011, 21(10): 2476-88. |
48 | Ding WJ. Opportunities and challenges for the biodegradable magnesium alloys as next-generation biomaterials[J]. Regen Biomater, 2016, 3(2): 79-86. |
49 | Bian D, Chu X, Xiao J, et al. Design of single-phased magnesium alloys with typically high solubility rare earth elements for biomedical applications: Concept and proof[J]. Bioact Mater, 2023, 22: 180-200. |
50 | Ding YF, Lin JX, Wen CE, et al. Mechanical properties, in vitro corrosion and biocompatibility of newly developed biodegradable Mg-Zr-Sr-Ho alloys for biomedical applications[J]. Sci Rep, 2016, 6: 31990. |
51 | Munir K, Lin JX, Wen CE, et al. Mechanical, corrosion, and biocompatibility properties of Mg-Zr-Sr-Sc alloys for biodegradable implant applications[J]. Acta Biomater, 2020, 102: 493-507. |
52 | Erbel R, Di Mario C, Bartunek J, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial[J]. Lancet, 2007, 369(9576): 1869-75. |
53 | Song XZ, Chang L, Wang J, et al. Investigation on the in vitro cytocompatibility of Mg-Zn-Y-Nd-Zr alloys as degradable orthopaedic implant materials[J]. J Mater Sci Mater Med, 2018, 29(4): 44. |
54 | Liu DX, Yin XY, Pang X, et al. Effects of Dy, Sr and die casting on microstructure, mechanical and corrosion properties of Mg-Dy-Sr-Nd-Zr alloys[J]. J Mater Eng Perform, 2017, 26(8): 3983-92. |
55 | Liu DX, Yang DL, Li XL, et al. Mechanical properties, corrosion resistance and biocompatibilities of degradable Mg-RE alloys: a review[J]. J Mater Res Technol, 2019, 8(1): 1538-49. |
56 | Liu M, Schmutz P, Uggowitzer PJ, et al. The influence of yttrium (Y) on the corrosion of Mg-Y binary alloys[J]. Corros Sci, 2010, 52(11): 3687-701. |
57 | Nie S, Chen JK, Liu C, et al. Effects of extract solution from magnesium alloys supplemented with different compositions of rare earth elements on in vitro epithelial and osteoblast progenitor cells[J]. Front Bioeng Biotechnol, 2023, 11: 1138675. |
58 | Lindtner RA, Castellani C, Tangl S, et al. Comparative biomechanical and radiological characterization of osseointegration of a biodegradable magnesium alloy pin and a copolymeric control for osteosynthesis[J]. J Mech Behav Biomed Mater, 2013, 28: 232-43. |
59 | Kong XD, Wang L, Li GY, et al. Mg-based bone implants show promising osteoinductivity and controllable degradation: a long-term study in a goat femoral condyle fracture model[J]. Mater Sci Eng C Mater Biol Appl, 2018, 86: 42-7. |
60 | Xie K, Wang NQ, Guo Y, et al. Additively manufactured biodegradable porous magnesium implants for elimination of implant-related infections: an in vitro and in vivo study[J]. Bioact Mater, 2021, 8: 140-52. |
61 | Chou DT, Hong D, Oksuz S, et al. Corrosion and bone healing of Mg-Y-Zn-Zr-Ca alloy implants: Comparative in vivo study in a non-immobilized rat femoral fracture model[J]. J Biomater Appl, 2019, 33(9): 1178-94. |
62 | Fischer H, Schmidt-Bleek O, Orassi V, et al. Biomechanical comparison of WE43-based magnesium vs. titanium miniplates in a mandible fracture model in sheep[J]. Materials, 2022, 16(1): 102. |
63 | Martinez Sanchez AH, Luthringer BJC, Feyerabend F, et al. Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates? A review[J]. Acta Biomater, 2015, 13: 16-31. |
64 | Myrissa A, Braeuer S, Martinelli E, et al. Gadolinium accumulation in organs of Sprague-Dawley® rats after implantation of a biodegradable magnesium-gadolinium alloy[J]. Acta Biomater, 2017, 48: 521-9. |
65 | Diekmann J, Bauer S, Weizbauer A, et al. Examination of a biodegradable magnesium screw for the reconstruction of the anterior cruciate ligament: a pilot in vivo study in rabbits[J]. Mater Sci Eng C Mater Biol Appl, 2016, 59: 1100-9. |
66 | Ma DL, Wang J, Zheng MR, et al. Degradation behavior of ZE21C magnesium alloy suture anchors and their effect on ligament-bone junction repair[J]. Bioact Mater, 2023, 26: 128-41. |
67 | Ezechieli M, Ettinger M, König C, et al. Biomechanical characteristics of bioabsorbable magnesium-based (MgYREZr-alloy) interference screws with different threads[J]. Knee Surg Sports Traumatol Arthrosc, 2016, 24(12): 3976-81. |
68 | Ezechieli M, Meyer H, Lucas A, et al. Biomechanical properties of a novel biodegradable magnesium-based interference screw[J]. Orthop Rev: Pavia, 2016, 8(2): 6445. |
69 | Bockmann B, Jaeger E, Dankl L, et al. A biomechanical comparison of steel screws versus PLLA and magnesium screws for the Latarjet procedure[J]. Arch Orthop Trauma Surg, 2022, 142(6): 1091-8. |
70 | Windhagen H, Radtke K, Weizbauer A, et al. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux Valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study[J]. Biomed Eng Online, 2013, 12: 62. |
71 | Windhagen H, Radtke K, Weizbauer A, et al. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux Valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study[J]. Biomed Eng Online, 2013, 12: 62. |
72 | Klauser H. Internal fixation of three-dimensional distal metatarsal I osteotomies in the treatment of hallux Valgus deformities using biodegradable magnesium screws in comparison to titanium screws[J]. Foot Ankle Surg, 2019, 25(3): 398-405. |
73 | Choo JT, Lai SHS, Tang CQY, et al. Magnesium-based bioabsorbable screw fixation for hallux Valgus surgery-A suitable alternative to metallic implants[J]. Foot Ankle Surg, 2019, 25(6): 727-32. |
74 | May H, Alper Kati Y, Gumussuyu G, et al. Bioabsorbable magnesium screw versus conventional titanium screw fixation for medial malleolar fractures[J]. J Orthop Traumatol, 2020, 21(1): 9. |
75 | Acar B, Kose O, Unal M, et al. Comparison of magnesium versus titanium screw fixation for biplane Chevron medial malleolar osteotomy in the treatment of osteochondral lesions of the talus[J]. Eur J Orthop Surg Traumatol, 2020, 30(1): 163-73. |
76 | Leonhardt H, Ziegler A, Lauer G, et al. Osteosynthesis of the mandibular condyle with magnesium-based biodegradable headless compression screws show good clinical results during a 1-year follow-up period[J]. J Oral Maxillofac Surg, 2021, 79(3): 637-43. |
77 | Aktan C, Ertan MB, Turan A, et al. Fixation of small osteochondral fragments in a comminuted distal humerus fracture with magnesium bioabsorbable screws: a case report[J]. Cureus, 2018, 10(12): e3752. |
78 | Grieve P, O'Carroll S, Albastaki O. Six cas de série de patients de Magnezix®. Une vis métallique absorbable pour la fixation de la fracture du carpe et des fusions entre les carpes[J]. Hand Surg Rehabil, 2017, 36(6): 488-9. |
79 | Meier R, Panzica M. First results with a resorbable MgYREZr compression screw in unstable scaphoid fractures show extensive bone cysts[J]. Handchir Mikrochir Plast Chir, 2017, 49(1): 37-41. |
80 | Gigante A, Setaro N, Rotini M, et al. Intercondylar eminence fracture treated by resorbable magnesium screws osteosynthesis: a case series[J]. Injury, 2018, 49(): S48-53. |
81 | Xie K, Wang L, Guo Y, et al. Effectiveness and safety of biodegradable Mg-Nd-Zn-Zr alloy screws for the treatment of medial malleolar fractures[J]. J Orthop Translat, 2021, 27: 96-100. |
[1] |
.
Fabrication of a new composite scaffold material for delivering rifampicin and its sustained drug release in rats [J]. Journal of Southern Medical University, 2016, 36(03): 309-. |
[2] |
.
Study on Structure characteristics and biocompatibility of new-model Nano-Ta-Ti alloy rod fabricated by laser melting technique [J]. Journal of Southern Medical University, 2014, 34(06): 852-. |
[3] | YANG Xi-xiao, CHEN Jan-hai, GUO Dan. Study of biocompatibility of polybutylcyanoacrylate nanoparticles [J]. Journal of Southern Medical University, 2005, 25(10): 1261-1263. |
[4] | WANG Qun-li1, PEI Guo-xian1, ZENG Xian-li1, JIN Dan1, WEI Kuan-hai1, LIU Xiao-xia1, ZHONG Shi-zhen2, OU Yang-jun2. In vitro biocompatibility of novel absorbable hydroxyapatite and AO artificial bone β-tricalcium phosphate with rhesus bone marrow stromal cells [J]. Journal of Southern Medical University, 2005, 25(01): 44-47. |
[5] | DENG Zheng-xing, ZHANG Zhi-xiong, LI Li-hua, ZHOU Chang-ren. Biocompatibility evaluation of chitosan-g-polyvinylpyrrolidone [J]. Journal of Southern Medical University, 2004, 24(06): 639-641,645. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||