Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (12): 2461-2468.doi: 10.12122/j.issn.1673-4254.2024.12.23
Shuying WANG(), Xinyu LIU(
), Rundong LI, Yang LI
Received:
2024-08-21
Online:
2024-12-20
Published:
2024-12-26
Contact:
Xinyu LIU
E-mail:wangshuying0601@163.com;2472592061@qq.com
Shuying WANG, Xinyu LIU, Rundong LI, Yang LI. Parameter estimation using time-dependent Weibull proportional hazards model for survival analysis with partly interval censored data[J]. Journal of Southern Medical University, 2024, 44(12): 2461-2468.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.12.23
n | Parameter | BIAS | SSE | ESE | CP | BIAS | SSE | ESE | CP |
---|---|---|---|---|---|---|---|---|---|
200 | 0.0227 | 0.1405 | 0.1399 | 0.952 | 0.0138 | 0.1201 | 0.1199 | 0.955 | |
0.0499 | 0.1187 | 0.1130 | 0.936 | 0.0353 | 0.0936 | 0.0901 | 0.940 | ||
0.0312 | 0.2129 | 0.1998 | 0.943 | 0.0195 | 0.1738 | 0.1675 | 0.947 | ||
0.0458 | 0.2307 | 0.2138 | 0.934 | 0.0318 | 0.1861 | 0.1781 | 0.940 | ||
0.0377 | 0.2392 | 0.2393 | 0.942 | 0.0344 | 0.2111 | 0.1999 | 0.936 | ||
400 | 0.0140 | 0.0954 | 0.0982 | 0.956 | 0.0081 | 0.0900 | 0.0846 | 0.942 | |
0.0191 | 0.0785 | 0.0769 | 0.935 | 0.0177 | 0.0631 | 0.0626 | 0.955 | ||
0.0142 | 0.1351 | 0.1372 | 0.956 | 0.0039 | 0.1205 | 0.1167 | 0.941 | ||
0.0213 | 0.1503 | 0.1466 | 0.939 | 0.0196 | 0.1230 | 0.1241 | 0.947 | ||
0.0187 | 0.1696 | 0.1651 | 0.948 | 0.0160 | 0.1460 | 0.1395 | 0.947 | ||
600 | 0.0087 | 0.0815 | 0.0796 | 0.950 | 0.0084 | 0.1121 | 0.1102 | 0.943 | |
0.0145 | 0.0623 | 0.0627 | 0.946 | 0.0106 | 0.0494 | 0.0508 | 0.960 | ||
0.0070 | 0.1151 | 0.1114 | 0.943 | 0.0068 | 0.1939 | 0.1863 | 0.941 | ||
0.0149 | 0.1216 | 0.1193 | 0.952 | 0.0043 | 0.0998 | 0.1015 | 0.953 | ||
0.0155 | 0.1325 | 0.1343 | 0.947 | 0.0063 | 0.1166 | 0.1144 | 0.955 |
Tab.1 Parameter estimation results for truth setting (1) with independent covariates
n | Parameter | BIAS | SSE | ESE | CP | BIAS | SSE | ESE | CP |
---|---|---|---|---|---|---|---|---|---|
200 | 0.0227 | 0.1405 | 0.1399 | 0.952 | 0.0138 | 0.1201 | 0.1199 | 0.955 | |
0.0499 | 0.1187 | 0.1130 | 0.936 | 0.0353 | 0.0936 | 0.0901 | 0.940 | ||
0.0312 | 0.2129 | 0.1998 | 0.943 | 0.0195 | 0.1738 | 0.1675 | 0.947 | ||
0.0458 | 0.2307 | 0.2138 | 0.934 | 0.0318 | 0.1861 | 0.1781 | 0.940 | ||
0.0377 | 0.2392 | 0.2393 | 0.942 | 0.0344 | 0.2111 | 0.1999 | 0.936 | ||
400 | 0.0140 | 0.0954 | 0.0982 | 0.956 | 0.0081 | 0.0900 | 0.0846 | 0.942 | |
0.0191 | 0.0785 | 0.0769 | 0.935 | 0.0177 | 0.0631 | 0.0626 | 0.955 | ||
0.0142 | 0.1351 | 0.1372 | 0.956 | 0.0039 | 0.1205 | 0.1167 | 0.941 | ||
0.0213 | 0.1503 | 0.1466 | 0.939 | 0.0196 | 0.1230 | 0.1241 | 0.947 | ||
0.0187 | 0.1696 | 0.1651 | 0.948 | 0.0160 | 0.1460 | 0.1395 | 0.947 | ||
600 | 0.0087 | 0.0815 | 0.0796 | 0.950 | 0.0084 | 0.1121 | 0.1102 | 0.943 | |
0.0145 | 0.0623 | 0.0627 | 0.946 | 0.0106 | 0.0494 | 0.0508 | 0.960 | ||
0.0070 | 0.1151 | 0.1114 | 0.943 | 0.0068 | 0.1939 | 0.1863 | 0.941 | ||
0.0149 | 0.1216 | 0.1193 | 0.952 | 0.0043 | 0.0998 | 0.1015 | 0.953 | ||
0.0155 | 0.1325 | 0.1343 | 0.947 | 0.0063 | 0.1166 | 0.1144 | 0.955 |
n | Parameter | BIAS | SSE | ESE | CP | BIAS | SSE | ESE | CP |
---|---|---|---|---|---|---|---|---|---|
200 | 0.0147 | 0.0898 | 0.0868 | 0.952 | 0.0087 | 0.0837 | 0.0810 | 0.942 | |
0.0275 | 0.0794 | 0.0764 | 0.938 | 0.0215 | 0.0634 | 0.0623 | 0.943 | ||
0.0335 | 0.1823 | 0.1805 | 0.951 | 0.0254 | 0.1617 | 0.1645 | 0.947 | ||
0.0260 | 0.1799 | 0.1737 | 0.944 | 0.0212 | 0.1658 | 0.1597 | 0.945 | ||
0.0207 | 0.2102 | 0.2020 | 0.940 | 0.0147 | 0.1833 | 0.1858 | 0.956 | ||
400 | 0.0057 | 0.0600 | 0.0607 | 0.956 | 0.0036 | 0.0558 | 0.0571 | 0.959 | |
0.0089 | 0.0532 | 0.0525 | 0.952 | 0.0082 | 0.0436 | 0.0433 | 0.949 | ||
0.0147 | 0.1237 | 0.1241 | 0.951 | -0.0108 | 0.1134 | 0.1147 | 0.953 | ||
0.0131 | 0.1235 | 0.1200 | 0.955 | 0.0024 | 0.1164 | 0.1116 | 0.940 | ||
0.0136 | 0.1409 | 0.1400 | 0.954 | 0.0092 | 0.1253 | 0.1300 | 0.960 | ||
600 | 0.0035 | 0.0496 | 0.0490 | 0.951 | 0.0031 | 0.0485 | 0.0465 | 0.944 | |
0.0087 | 0.0445 | 0.0428 | 0.945 | 0.0070 | 0.0364 | 0.0352 | 0.946 | ||
-0.0065 | 0.0998 | 0.1009 | 0.956 | -0.0059 | 0.1005 | 0.0933 | 0.943 | ||
0.0037 | 0.0992 | 0.0973 | 0.940 | -0.0022 | 0.0897 | 0.0905 | 0.938 | ||
0.0090 | 0.1152 | 0.1137 | 0.943 | 0.0075 | 0.1104 | 0.1057 | 0.937 |
Tab.2 Parameter estimation results for truth setting (2) with independent covariates
n | Parameter | BIAS | SSE | ESE | CP | BIAS | SSE | ESE | CP |
---|---|---|---|---|---|---|---|---|---|
200 | 0.0147 | 0.0898 | 0.0868 | 0.952 | 0.0087 | 0.0837 | 0.0810 | 0.942 | |
0.0275 | 0.0794 | 0.0764 | 0.938 | 0.0215 | 0.0634 | 0.0623 | 0.943 | ||
0.0335 | 0.1823 | 0.1805 | 0.951 | 0.0254 | 0.1617 | 0.1645 | 0.947 | ||
0.0260 | 0.1799 | 0.1737 | 0.944 | 0.0212 | 0.1658 | 0.1597 | 0.945 | ||
0.0207 | 0.2102 | 0.2020 | 0.940 | 0.0147 | 0.1833 | 0.1858 | 0.956 | ||
400 | 0.0057 | 0.0600 | 0.0607 | 0.956 | 0.0036 | 0.0558 | 0.0571 | 0.959 | |
0.0089 | 0.0532 | 0.0525 | 0.952 | 0.0082 | 0.0436 | 0.0433 | 0.949 | ||
0.0147 | 0.1237 | 0.1241 | 0.951 | -0.0108 | 0.1134 | 0.1147 | 0.953 | ||
0.0131 | 0.1235 | 0.1200 | 0.955 | 0.0024 | 0.1164 | 0.1116 | 0.940 | ||
0.0136 | 0.1409 | 0.1400 | 0.954 | 0.0092 | 0.1253 | 0.1300 | 0.960 | ||
600 | 0.0035 | 0.0496 | 0.0490 | 0.951 | 0.0031 | 0.0485 | 0.0465 | 0.944 | |
0.0087 | 0.0445 | 0.0428 | 0.945 | 0.0070 | 0.0364 | 0.0352 | 0.946 | ||
-0.0065 | 0.0998 | 0.1009 | 0.956 | -0.0059 | 0.1005 | 0.0933 | 0.943 | ||
0.0037 | 0.0992 | 0.0973 | 0.940 | -0.0022 | 0.0897 | 0.0905 | 0.938 | ||
0.0090 | 0.1152 | 0.1137 | 0.943 | 0.0075 | 0.1104 | 0.1057 | 0.937 |
n | Parameter | BIAS | SSE | ESE | CP | BIAS | SSE | ESE | CP |
---|---|---|---|---|---|---|---|---|---|
200 | 0.0213 | 0.1685 | 0.1610 | 0.930 | 0.0142 | 0.1389 | 0.1315 | 0.937 | |
0.0475 | 0.1433 | 0.1405 | 0.950 | 0.0310 | 0.1124 | 0.1079 | 0.935 | ||
0.0421 | 0.3103 | 0.2970 | 0.943 | 0.0348 | 0.2283 | 0.2267 | 0.953 | ||
-0.0084 | 0.2119 | 0.1949 | 0.936 | -0.0072 | 0.1616 | 0.1602 | 0.953 | ||
0.0061 | 0.2305 | 0.2231 | 0.944 | 0.0034 | 0.1981 | 0.1843 | 0.942 | ||
400 | 0.0124 | 0.1160 | 0.1125 | 0.948 | 0.0067 | 0.0935 | 0.0925 | 0.951 | |
0.0224 | 0.0968 | 0.0968 | 0.956 | 0.0096 | 0.0733 | 0.0744 | 0.957 | ||
0.0203 | 0.2082 | 0.2024 | 0.947 | 0.0136 | 0.1541 | 0.1561 | 0.951 | ||
-0.0082 | 0.1374 | 0.1346 | 0.935 | -0.0037 | 0.1089 | 0.1120 | 0.955 | ||
-0.0078 | 0.1528 | 0.1546 | 0.953 | 0.0052 | 0.1336 | 0.1288 | 0.945 | ||
600 | 0.0060 | 0.0932 | 0.0908 | 0.951 | 0.0049 | 0.0767 | 0.0751 | 0.946 | |
0.0147 | 0.0787 | 0.0781 | 0.951 | 0.0086 | 0.0614 | 0.0607 | 0.950 | ||
0.0127 | 0.1578 | 0.1631 | 0.959 | 0.0068 | 0.1247 | 0.1264 | 0.965 | ||
-0.0048 | 0.1100 | 0.1090 | 0.953 | -0.0026 | 0.0931 | 0.0912 | 0.945 | ||
0.0072 | 0.1288 | 0.1256 | 0.934 | -0.0025 | 0.1086 | 0.1048 | 0.934 |
Tab.3 Partial time-dependent covariate parameter estimates under truth setting (1)
n | Parameter | BIAS | SSE | ESE | CP | BIAS | SSE | ESE | CP |
---|---|---|---|---|---|---|---|---|---|
200 | 0.0213 | 0.1685 | 0.1610 | 0.930 | 0.0142 | 0.1389 | 0.1315 | 0.937 | |
0.0475 | 0.1433 | 0.1405 | 0.950 | 0.0310 | 0.1124 | 0.1079 | 0.935 | ||
0.0421 | 0.3103 | 0.2970 | 0.943 | 0.0348 | 0.2283 | 0.2267 | 0.953 | ||
-0.0084 | 0.2119 | 0.1949 | 0.936 | -0.0072 | 0.1616 | 0.1602 | 0.953 | ||
0.0061 | 0.2305 | 0.2231 | 0.944 | 0.0034 | 0.1981 | 0.1843 | 0.942 | ||
400 | 0.0124 | 0.1160 | 0.1125 | 0.948 | 0.0067 | 0.0935 | 0.0925 | 0.951 | |
0.0224 | 0.0968 | 0.0968 | 0.956 | 0.0096 | 0.0733 | 0.0744 | 0.957 | ||
0.0203 | 0.2082 | 0.2024 | 0.947 | 0.0136 | 0.1541 | 0.1561 | 0.951 | ||
-0.0082 | 0.1374 | 0.1346 | 0.935 | -0.0037 | 0.1089 | 0.1120 | 0.955 | ||
-0.0078 | 0.1528 | 0.1546 | 0.953 | 0.0052 | 0.1336 | 0.1288 | 0.945 | ||
600 | 0.0060 | 0.0932 | 0.0908 | 0.951 | 0.0049 | 0.0767 | 0.0751 | 0.946 | |
0.0147 | 0.0787 | 0.0781 | 0.951 | 0.0086 | 0.0614 | 0.0607 | 0.950 | ||
0.0127 | 0.1578 | 0.1631 | 0.959 | 0.0068 | 0.1247 | 0.1264 | 0.965 | ||
-0.0048 | 0.1100 | 0.1090 | 0.953 | -0.0026 | 0.0931 | 0.0912 | 0.945 | ||
0.0072 | 0.1288 | 0.1256 | 0.934 | -0.0025 | 0.1086 | 0.1048 | 0.934 |
n | Parameter | BIAS | SSE | ESE | CP | BIAS | SSE | ESE | CP |
---|---|---|---|---|---|---|---|---|---|
200 | 0.0167 | 0.1318 | 0.1251 | 0.948 | 0.0095 | 0.1161 | 0.1082 | 0.942 | |
0.0227 | 0.1187 | 0.1134 | 0.946 | 0.0189 | 0.0979 | 0.0933 | 0.957 | ||
0.0281 | 0.2226 | 0.2235 | 0.954 | 0.0229 | 0.2076 | 0.1999 | 0.940 | ||
-0.0507 | 0.2549 | 0.2579 | 0.955 | -0.0476 | 0.2416 | 0.2355 | 0.953 | ||
-0.0476 | 0.2883 | 0.2752 | 0.951 | -0.0354 | 0.2531 | 0.2537 | 0.949 | ||
400 | 0.0107 | 0.0891 | 0.0854 | 0.946 | 0.0063 | 0.0775 | 0.0750 | 0.942 | |
0.0159 | 0.0783 | 0.0792 | 0.951 | 0.0125 | 0.0654 | 0.0652 | 0.954 | ||
0.0109 | 0.1590 | 0.1561 | 0.943 | 0.0098 | 0.1395 | 0.1395 | 0.951 | ||
-0.0323 | 0.1790 | 0.1795 | 0.952 | -0.0218 | 0.1660 | 0.1633 | 0.945 | ||
-0.0372 | 0.1960 | 0.1924 | 0.951 | -0.0244 | 0.1790 | 0.1771 | 0.944 | ||
600 | 0.0068 | 0.0704 | 0.0693 | 0.956 | -0.0001 | 0.0600 | 0.0607 | 0.950 | |
0.0088 | 0.0615 | 0.0640 | 0.960 | 0.0081 | 0.0541 | 0.0530 | 0.951 | ||
0.0066 | 0.1239 | 0.1266 | 0.955 | 0.0061 | 0.1214 | 0.1135 | 0.933 | ||
-0.0259 | 0.1456 | 0.1454 | 0.954 | -0.0176 | 0.1339 | 0.1330 | 0.951 | ||
-0.0256 | 0.1586 | 0.1558 | 0.952 | -0.0119 | 0.1411 | 0.1440 | 0.961 |
Tab.4 Partial time-dependent covariate parameter estimates under truth setting (2)
n | Parameter | BIAS | SSE | ESE | CP | BIAS | SSE | ESE | CP |
---|---|---|---|---|---|---|---|---|---|
200 | 0.0167 | 0.1318 | 0.1251 | 0.948 | 0.0095 | 0.1161 | 0.1082 | 0.942 | |
0.0227 | 0.1187 | 0.1134 | 0.946 | 0.0189 | 0.0979 | 0.0933 | 0.957 | ||
0.0281 | 0.2226 | 0.2235 | 0.954 | 0.0229 | 0.2076 | 0.1999 | 0.940 | ||
-0.0507 | 0.2549 | 0.2579 | 0.955 | -0.0476 | 0.2416 | 0.2355 | 0.953 | ||
-0.0476 | 0.2883 | 0.2752 | 0.951 | -0.0354 | 0.2531 | 0.2537 | 0.949 | ||
400 | 0.0107 | 0.0891 | 0.0854 | 0.946 | 0.0063 | 0.0775 | 0.0750 | 0.942 | |
0.0159 | 0.0783 | 0.0792 | 0.951 | 0.0125 | 0.0654 | 0.0652 | 0.954 | ||
0.0109 | 0.1590 | 0.1561 | 0.943 | 0.0098 | 0.1395 | 0.1395 | 0.951 | ||
-0.0323 | 0.1790 | 0.1795 | 0.952 | -0.0218 | 0.1660 | 0.1633 | 0.945 | ||
-0.0372 | 0.1960 | 0.1924 | 0.951 | -0.0244 | 0.1790 | 0.1771 | 0.944 | ||
600 | 0.0068 | 0.0704 | 0.0693 | 0.956 | -0.0001 | 0.0600 | 0.0607 | 0.950 | |
0.0088 | 0.0615 | 0.0640 | 0.960 | 0.0081 | 0.0541 | 0.0530 | 0.951 | ||
0.0066 | 0.1239 | 0.1266 | 0.955 | 0.0061 | 0.1214 | 0.1135 | 0.933 | ||
-0.0259 | 0.1456 | 0.1454 | 0.954 | -0.0176 | 0.1339 | 0.1330 | 0.951 | ||
-0.0256 | 0.1586 | 0.1558 | 0.952 | -0.0119 | 0.1411 | 0.1440 | 0.961 |
n | Parameter | BIAS | SSE | ESE | CP | BIAS | SSE | ESE | CP |
---|---|---|---|---|---|---|---|---|---|
200 | 0.0289 | 0.1344 | 0.1256 | 0.948 | 0.0278 | 0.1217 | 0.1177 | 0.951 | |
0.0140 | 0.0647 | 0.0636 | 0.946 | 0.0135 | 0.0520 | 0.0514 | 0.957 | ||
-0.0095 | 0.0625 | 0.0624 | 0.957 | -0.0086 | 0.0498 | 0.0500 | 0.961 | ||
0.0207 | 0.1835 | 0.1749 | 0.937 | 0.0089 | 0.1750 | 0.1620 | 0.931 | ||
0.0220 | 0.2064 | 0.1996 | 0.950 | 0.0148 | 0.1924 | 0.1860 | 0.940 | ||
400 | 0.0119 | 0.0874 | 0.0843 | 0.958 | 0.0054 | 0.0821 | 0.0789 | 0.935 | |
0.0074 | 0.0453 | 0.0445 | 0.943 | 0.0070 | 0.0375 | 0.0359 | 0.938 | ||
-0.0055 | 0.0446 | 0.0436 | 0.945 | -0.0050 | 0.0364 | 0.0349 | 0.945 | ||
0.0064 | 0.1232 | 0.1215 | 0.946 | 0.0026 | 0.1170 | 0.1134 | 0.947 | ||
0.0134 | 0.1373 | 0.1391 | 0.955 | 0.0134 | 0.1338 | 0.1306 | 0.942 | ||
600 | 0.0072 | 0.0686 | 0.0677 | 0.935 | 0.0047 | 0.0653 | 0.0643 | 0.948 | |
0.0058 | 0.0358 | 0.0362 | 0.946 | 0.0051 | 0.0298 | 0.0293 | 0.955 | ||
-0.0044 | 0.0347 | 0.0354 | 0.951 | -0.004 | 0.0292 | 0.0284 | 0.943 | ||
0.0024 | 0.0987 | 0.0986 | 0.951 | 0.0025 | 0.0942 | 0.0922 | 0.951 | ||
0.0114 | 0.1123 | 0.1131 | 0.945 | 0.0099 | 0.1061 | 0.1063 | 0.943 |
Tab.5 Partial time-dependent covariate parameter estimates under truth setting (3)
n | Parameter | BIAS | SSE | ESE | CP | BIAS | SSE | ESE | CP |
---|---|---|---|---|---|---|---|---|---|
200 | 0.0289 | 0.1344 | 0.1256 | 0.948 | 0.0278 | 0.1217 | 0.1177 | 0.951 | |
0.0140 | 0.0647 | 0.0636 | 0.946 | 0.0135 | 0.0520 | 0.0514 | 0.957 | ||
-0.0095 | 0.0625 | 0.0624 | 0.957 | -0.0086 | 0.0498 | 0.0500 | 0.961 | ||
0.0207 | 0.1835 | 0.1749 | 0.937 | 0.0089 | 0.1750 | 0.1620 | 0.931 | ||
0.0220 | 0.2064 | 0.1996 | 0.950 | 0.0148 | 0.1924 | 0.1860 | 0.940 | ||
400 | 0.0119 | 0.0874 | 0.0843 | 0.958 | 0.0054 | 0.0821 | 0.0789 | 0.935 | |
0.0074 | 0.0453 | 0.0445 | 0.943 | 0.0070 | 0.0375 | 0.0359 | 0.938 | ||
-0.0055 | 0.0446 | 0.0436 | 0.945 | -0.0050 | 0.0364 | 0.0349 | 0.945 | ||
0.0064 | 0.1232 | 0.1215 | 0.946 | 0.0026 | 0.1170 | 0.1134 | 0.947 | ||
0.0134 | 0.1373 | 0.1391 | 0.955 | 0.0134 | 0.1338 | 0.1306 | 0.942 | ||
600 | 0.0072 | 0.0686 | 0.0677 | 0.935 | 0.0047 | 0.0653 | 0.0643 | 0.948 | |
0.0058 | 0.0358 | 0.0362 | 0.946 | 0.0051 | 0.0298 | 0.0293 | 0.955 | ||
-0.0044 | 0.0347 | 0.0354 | 0.951 | -0.004 | 0.0292 | 0.0284 | 0.943 | ||
0.0024 | 0.0987 | 0.0986 | 0.951 | 0.0025 | 0.0942 | 0.0922 | 0.951 | ||
0.0114 | 0.1123 | 0.1131 | 0.945 | 0.0099 | 0.1061 | 0.1063 | 0.943 |
Model | n | BIAS | SSE | ESE | CP | BIAS | SSE | ESE | CP | |
---|---|---|---|---|---|---|---|---|---|---|
Cox model with time-varying covariates | 200 | 0.0226 | 0.2795 | 0.2636 | 0.939 | 0.0258 | 0.2295 | 0.2201 | 0.931 | |
0.0648 | 0.2041 | 0.2006 | 0.937 | 0.0417 | 0.1727 | 0.1684 | 0.945 | |||
-0.0572 | 0.2283 | 0.2140 | 0.934 | -0.0367 | 0.1907 | 0.1802 | 0.938 | |||
400 | 0.0164 | 0.1842 | 0.1816 | 0.952 | 0.0170 | 0.1552 | 0.1550 | 0.952 | ||
0.0341 | 0.1391 | 0.1388 | 0.943 | 0.0258 | 0.1204 | 0.1174 | 0.944 | |||
-0.0254 | 0.1519 | 0.1488 | 0.944 | -0.0233 | 0.1287 | 0.1264 | 0.941 | |||
Time-dependent weibull proportional hazards model | 200 | 0.0123 | 0.1401 | 0.1348 | 0.950 | 0.0124 | 0.1115 | 0.1088 | 0.945 | |
0.0447 | 0.2017 | 0.1993 | 0.956 | 0.0394 | 0.1862 | 0.1844 | 0.956 | |||
-0.0344 | 0.2242 | 0.2135 | 0.944 | -0.0285 | 0.2105 | 0.1998 | 0.941 | |||
400 | 0.0050 | 0.0919 | 0.0932 | 0.948 | 0.0088 | 0.0788 | 0.0761 | 0.958 | ||
0.0211 | 0.1431 | 0.1383 | 0.944 | 0.0215 | 0.1283 | 0.1287 | 0.951 | |||
-0.0165 | 0.1518 | 0.1488 | 0.939 | -0.0096 | 0.1477 | 0.1399 | 0.940 |
Tab.6 Parameter estimation results of the Cox model with time-varying covariates and the time-dependent Weibull proportional hazards model
Model | n | BIAS | SSE | ESE | CP | BIAS | SSE | ESE | CP | |
---|---|---|---|---|---|---|---|---|---|---|
Cox model with time-varying covariates | 200 | 0.0226 | 0.2795 | 0.2636 | 0.939 | 0.0258 | 0.2295 | 0.2201 | 0.931 | |
0.0648 | 0.2041 | 0.2006 | 0.937 | 0.0417 | 0.1727 | 0.1684 | 0.945 | |||
-0.0572 | 0.2283 | 0.2140 | 0.934 | -0.0367 | 0.1907 | 0.1802 | 0.938 | |||
400 | 0.0164 | 0.1842 | 0.1816 | 0.952 | 0.0170 | 0.1552 | 0.1550 | 0.952 | ||
0.0341 | 0.1391 | 0.1388 | 0.943 | 0.0258 | 0.1204 | 0.1174 | 0.944 | |||
-0.0254 | 0.1519 | 0.1488 | 0.944 | -0.0233 | 0.1287 | 0.1264 | 0.941 | |||
Time-dependent weibull proportional hazards model | 200 | 0.0123 | 0.1401 | 0.1348 | 0.950 | 0.0124 | 0.1115 | 0.1088 | 0.945 | |
0.0447 | 0.2017 | 0.1993 | 0.956 | 0.0394 | 0.1862 | 0.1844 | 0.956 | |||
-0.0344 | 0.2242 | 0.2135 | 0.944 | -0.0285 | 0.2105 | 0.1998 | 0.941 | |||
400 | 0.0050 | 0.0919 | 0.0932 | 0.948 | 0.0088 | 0.0788 | 0.0761 | 0.958 | ||
0.0211 | 0.1431 | 0.1383 | 0.944 | 0.0215 | 0.1283 | 0.1287 | 0.951 | |||
-0.0165 | 0.1518 | 0.1488 | 0.939 | -0.0096 | 0.1477 | 0.1399 | 0.940 |
Parameter | Scale parameter | Shape parameter | Gender | Scale parameter | Shape parameter | Gender |
---|---|---|---|---|---|---|
Only the exact data | Partly interval censored data | |||||
Estimate | 0.0532 | 2.8784 | -0.1439 | 0.0546 | 2.8263 | -0.1293 |
ESE | 0.0012 | 0.0855 | 0.0838 | 0.0012 | 0.0795 | 0.0777 |
P | <0.0001 | <0.0001 | 0.0428 | <0.0001 | <0.0001 | 0.0480 |
Tab.7 Estimates for Danish diabetes data obtained using the time-dependent Weibull proportional hazards model
Parameter | Scale parameter | Shape parameter | Gender | Scale parameter | Shape parameter | Gender |
---|---|---|---|---|---|---|
Only the exact data | Partly interval censored data | |||||
Estimate | 0.0532 | 2.8784 | -0.1439 | 0.0546 | 2.8263 | -0.1293 |
ESE | 0.0012 | 0.0855 | 0.0838 | 0.0012 | 0.0795 | 0.0777 |
P | <0.0001 | <0.0001 | 0.0428 | <0.0001 | <0.0001 | 0.0480 |
1 | Li JQ, Ma J. On hazard-based penalized likelihood estimation of accelerated failure time model with partly interval censoring[J]. Stat Methods Med Res, 2020, 29(12): 3804-17. |
2 | Fauzi NA, Elfaki F, Ali MY. Some method on survival analysis via weibull model in the present of partly interval censored: a short review[J]. Int J Comput Sci Net, 2015, 15(4): 48-51. |
3 | Mohsin Saeed N, Elfaki FAM. Parametric weibull model based on imputations techniques for partly interval censored data[J]. Austrian J Stat, 2020, 49(3): 30-7. |
4 | Jiang JJ, Wang CJ, Pan D, et al. Transformation models with informative partly interval-censored data[J]. Stat Comput, 2023, 34(1): 8. |
5 | 董小刚, 彭小草, 蒋京京, 等.部分区间删失数据下广义指数分布的参数估计及应用[J]. 吉林大学学报(理学版), 2022, 60(03): 557-567. |
6 | Odell PM, Anderson KM, D'Agostino RB. Maximum likelihood estimation for interval-censored data using a Weibull-based accelerated failure time model[J]. Biometrics, 1992, 48(3): 951-9. |
7 | Ramlau-Hansen H, Chr Bang Jespersen N, Kragh Andersen P, et al. Life insurance for insulin-dependent diabetics[J]. Scand Actuar J, 1987, 1987(1/2): 19-36. |
8 | Kim JS. Maximum likelihood estimation for the proportional hazards model with partly interval-censored data[J]. J R Stat Soc Ser B Stat Methodol, 2003, 65(2): 489-502. |
9 | Elfaki FAM, Azram M, Usman M. Parametric cox's model for partly interval-censored data with application to AIDS studies[J]. Int J Appl Phys Math, 2012: 352-4. |
10 | 李纯净, 赵昱榕, 张 淼. 部分区间删失数据下比例风险模型的贝叶斯变量选择[J]. 东北师大学报: 自然科学版, 2023, 55(3): 37-44. |
11 | Harrell FE. Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis [M]. 2nd ed. Cham, Switzerland: Springer International AG, 2015. |
12 | Pan C, Cai B. A Bayesian semiparametric mixed effects proportional hazards model for clustered partly interval-censored data[J]. Stat Model, 2024, 24(5): 459-79. |
13 | Fisher LD, Lin DY. Time-dependent covariates in the Cox proportional-hazards regression model[J]. Annu Rev Public Health, 1999, 20: 145-57. |
14 | Austin PC. Generating survival times to simulate Cox proportional hazards models with time-varying covariates[J]. Stat Med, 2012, 31(29): 3946-58. |
15 | Pinsky PF, Zhu CS, Kramer BS. Lung cancer risk by years since quitting in 30+ pack year smokers[J]. J Med Screen, 2015, 22(3): 151-7. |
16 | Webb A, Ma J. Cox models with time-varying covariates and partly-interval censoring-a maximum penalised likelihood approach[J]. Stat Med, 2023, 42(6): 815-33. |
17 | Crowley J, Hu M. Covariance analysis of heart transplant survival data[J]. J Am Stat Assoc, 1977, 72(357): 27. |
18 | 王淑影, 郭祥道, 李红伟, 等.区间删失数据下Weibull 比例优势模型的参数估计[J]. 山东科技大学学报(自然科学版), 2024, 43(01): 73-81. |
19 | Love CE, Guo R. Application of weibull proportional hazards modelling to bad-as-old failure data[J]. Quality & Reliability Eng, 1991, 7(3): 149-57. |
20 | 王淑影, 汪 童, 黄 鹤. 融合面板计数数据下相依区间删失数据的参数估计[J]. 系统科学与数学, 2024, 1-18.(网络首发) |
21 | Guan Z. Maximum approximate Bernstein likelihood estimation in proportional hazard model for interval-censored data[J]. Stat Med, 2021, 40(3): 758-78. |
22 | Austin PC, Fang J, Lee DS. Using fractional polynomials and restricted cubic splines to model non‐proportional hazards or time‐varying covariate effects in the Cox regression model[J]. Stat Med, 2022, 41(3): 612-24. |
23 | Xu R, Adak S. Survival analysis with time-varying relative risks: a tree-based approach[J]. Methods Inf Med, 2001, 40(2): 141-7. |
24 | Adeleke KA, Abiodun AA, Ipinyomi RA. Semi-parametric non-proportional hazard model with time varying covariate[J]. J Mod App Stat Meth, 2015, 14(2): 68-87. |
25 | Therneau TM, Grambsch PM. Modeling Survival Data: Extending the Cox Model[M]. New York, NY: Springer New York, 2000. |
26 | Thackham M, Ma J. On maximum likelihood estimation of the semi-parametric Cox model with time-varying covariates[J]. J Appl Stat, 2020, 47(9): 1511-28. |
27 | Zhou QN, Sun YQ, Gilbert PB. Semiparametric regression analysis of partly interval-censored failure time data with application to an AIDS clinical trial[J]. Stat Med, 2021, 40(20): 4376-94. |
28 | Green A, Borch-Johnsen K, Andersen PK, et al. Relative mortality of type 1 (insulin-dependent) diabetes in Denmark: 1933-1981[J]. Diabetologia, 1985, 28(6): 339-42. |
29 | Hammer SM, Katzenstein DA, Hughes MD, et al. A trial comparing nucleoside monotherapy with combination therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter. AIDS Clinical Trials Group Study 175 Study Team[J]. N Engl J Med, 1996, 335(15): 1081-90. |
30 | 刘颖欣, 康 佩, 许 军, 等. 条件推断森林在生存分析中的应用[J]. 南方医科大学学报, 2020, 40(4): 475-82. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||