Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (12): 2434-2442.doi: 10.12122/j.issn.1673-4254.2024.12.20
Yue HU1(), Yu ZENG2(
), Linjing WANG3, Zhiwei LIAO3, Jianming TAN3, Yanhao KUANG2, Pan GONG2, Bin QI3, Xin ZHEN1(
)
Received:
2024-09-06
Online:
2024-12-20
Published:
2024-12-26
Contact:
Yu ZENG, Xin ZHEN
E-mail:huyue058@gmail.com;apple02180717@126.com;xinzhen@smu.edu.cn
Supported by:
Yue HU, Yu ZENG, Linjing WANG, Zhiwei LIAO, Jianming TAN, Yanhao KUANG, Pan GONG, Bin QI, Xin ZHEN. Performance of multi-modality and multi-classifier fusion models for predicting radiation-induced oral mucositis in patients with nasopharyngeal carcinoma[J]. Journal of Southern Medical University, 2024, 44(12): 2434-2442.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.12.20
Fig.1 Flowchart of inclusion and exclusion of patients with nasopharyngeal carcinoma (NPC) who experienced radiation-induced oral mucositis (RIOM) following radiotherapy.
Characteristics | Training/validation set | Independent testing set | |||||
---|---|---|---|---|---|---|---|
Grade (1-2) | Grade (3-4) | P | Grade (1-2) | Grade (3-4) | P | ||
Age (year) | Median (range) | 47 (18-70) | 49 (18-75) | 0.37 | 48 (28-72) | 46 (37-67) | 0.43 |
Height (cm) | Mean±SD | 163.66±7.36 | 164.16±8.15 | 0.58 | 163.60±8.81 | 164.00±7.68 | 0.89 |
Weight (kg) | Mean±SD | 61.51±10.33 | 60.46±12.13 | 0.37 | 62.76±9.57 | 60.21±10.44 | 0.44 |
Body mass index | Mean±SD | 22.91±3.22 | 22.30±3.28 | 0.16 | 23.43±2.97 | 22.24±2.74 | 0.22 |
Gender | Female | 23 | 11 | 0.61 | 18 | 13 | 0.49 |
Male | 78 | 46 | 7 | 2 | |||
Tobacco use | Never | 69 | 44 | 0.46 | 16 | 10 | 0.74 |
Former | 24 | 9 | 8 | 5 | |||
Current | 8 | 4 | 1 | 0 | |||
Alcohol use | Never | 94 | 53 | 0.33 | 23 | 13 | 0.42 |
Former | 2 | 3 | 2 | 1 | |||
Current | 5 | 1 | 0 | 1 | |||
Number of radiotherapy fractions | Mean±SD | 32.53±0.72 | 32.79±0.59 | 0.03 | 32.60±0.58 | 32.47±0.52 | 0.56 |
Total dose (Gy) | Mean±SD | 70.23±0.97 | 70.22±1.65 | 0.54 | 70.37±0.97 | 70.04±0.19 | 0.16 |
Cycle of induction chemotherapy | Mean±SD | 3.06±0.86 | 2.93±0.90 | 0.20 | 2.84±1.21 | 2.53±1.06 | 0.49 |
Induced chemotherapy | No | 2 | 0 | 0.54 | 1 | 1 | 1.00 |
Yes | 99 | 57 | 24 | 14 | |||
Reduction of induced chemotherapy doses | No | 91 | 49 | 0.43 | 24 | 14 | 1.00 |
Yes | 10 | 8 | 1 | 1 | |||
Concurrent chemo-radiotherapy | No | 8 | 3 | 0.76 | 2 | 2 | 0.62 |
Yes | 93 | 54 | 23 | 13 |
Tab.1 Demographic and clinical data of the included patients
Characteristics | Training/validation set | Independent testing set | |||||
---|---|---|---|---|---|---|---|
Grade (1-2) | Grade (3-4) | P | Grade (1-2) | Grade (3-4) | P | ||
Age (year) | Median (range) | 47 (18-70) | 49 (18-75) | 0.37 | 48 (28-72) | 46 (37-67) | 0.43 |
Height (cm) | Mean±SD | 163.66±7.36 | 164.16±8.15 | 0.58 | 163.60±8.81 | 164.00±7.68 | 0.89 |
Weight (kg) | Mean±SD | 61.51±10.33 | 60.46±12.13 | 0.37 | 62.76±9.57 | 60.21±10.44 | 0.44 |
Body mass index | Mean±SD | 22.91±3.22 | 22.30±3.28 | 0.16 | 23.43±2.97 | 22.24±2.74 | 0.22 |
Gender | Female | 23 | 11 | 0.61 | 18 | 13 | 0.49 |
Male | 78 | 46 | 7 | 2 | |||
Tobacco use | Never | 69 | 44 | 0.46 | 16 | 10 | 0.74 |
Former | 24 | 9 | 8 | 5 | |||
Current | 8 | 4 | 1 | 0 | |||
Alcohol use | Never | 94 | 53 | 0.33 | 23 | 13 | 0.42 |
Former | 2 | 3 | 2 | 1 | |||
Current | 5 | 1 | 0 | 1 | |||
Number of radiotherapy fractions | Mean±SD | 32.53±0.72 | 32.79±0.59 | 0.03 | 32.60±0.58 | 32.47±0.52 | 0.56 |
Total dose (Gy) | Mean±SD | 70.23±0.97 | 70.22±1.65 | 0.54 | 70.37±0.97 | 70.04±0.19 | 0.16 |
Cycle of induction chemotherapy | Mean±SD | 3.06±0.86 | 2.93±0.90 | 0.20 | 2.84±1.21 | 2.53±1.06 | 0.49 |
Induced chemotherapy | No | 2 | 0 | 0.54 | 1 | 1 | 1.00 |
Yes | 99 | 57 | 24 | 14 | |||
Reduction of induced chemotherapy doses | No | 91 | 49 | 0.43 | 24 | 14 | 1.00 |
Yes | 10 | 8 | 1 | 1 | |||
Concurrent chemo-radiotherapy | No | 8 | 3 | 0.76 | 2 | 2 | 0.62 |
Yes | 93 | 54 | 23 | 13 |
Fig.3 Flowchart of the H-MCF algorithm. H-MCF: Hierarchical multi-modality and multi-classifier fusion; MCF: Multi-criterion decision-making (MCDM)-based classifier fusion.
Algorithm 1 Multi-Criterion Decision-making (MCDM) Based Classifier Fusion (MCF) Pseudocode |
---|
Input: An evaluation matrix E Process: Step 1: Normalize the evaluation matrix E column-wise: Step 2: Compute the weighted evaluation matrix: Step 3: Compute the distance of each classifier from the "worst" and "best" solutions: Step 4: Compute the fusion weight for each classifier: Step 5: Normalize the fusion weights: Step 6: Calculate the final fusion score: Output: Final prediction probability |
Tab.2 Multi-criterion decision-making (MCDM)-based classifier fusion (MCF) pseudocode
Algorithm 1 Multi-Criterion Decision-making (MCDM) Based Classifier Fusion (MCF) Pseudocode |
---|
Input: An evaluation matrix E Process: Step 1: Normalize the evaluation matrix E column-wise: Step 2: Compute the weighted evaluation matrix: Step 3: Compute the distance of each classifier from the "worst" and "best" solutions: Step 4: Compute the fusion weight for each classifier: Step 5: Normalize the fusion weights: Step 6: Calculate the final fusion score: Output: Final prediction probability |
Models | AUC | ACC | SEN | SPE | |
---|---|---|---|---|---|
DOCC | LDA+MIFS | 0.568 | 0.650 | 0.533 | 0.720 |
MLP+MIFS | 0.477 | 0.500 | 0.800 | 0.320 | |
MLP+MRMR | 0.477 | 0.500 | 0.800 | 0.320 | |
MCF | 0.592 | 0.600 | 0.600 | 0.600 | |
C | LR+ll_l21 | 0.779 | 0.750 | 0.600 | 0.840 |
MLP+ll_l21 | 0.851 | 0.800 | 0.667 | 0.880 | |
SVM+SPEC | 0.741 | 0.725 | 0.667 | 0.760 | |
MCF | 0.864 | 0.850 | 0.800 | 0.880 |
Tab.3 Predictive performance of the base models and MCF models for unimodal data
Models | AUC | ACC | SEN | SPE | |
---|---|---|---|---|---|
DOCC | LDA+MIFS | 0.568 | 0.650 | 0.533 | 0.720 |
MLP+MIFS | 0.477 | 0.500 | 0.800 | 0.320 | |
MLP+MRMR | 0.477 | 0.500 | 0.800 | 0.320 | |
MCF | 0.592 | 0.600 | 0.600 | 0.600 | |
C | LR+ll_l21 | 0.779 | 0.750 | 0.600 | 0.840 |
MLP+ll_l21 | 0.851 | 0.800 | 0.667 | 0.880 | |
SVM+SPEC | 0.741 | 0.725 | 0.667 | 0.760 | |
MCF | 0.864 | 0.850 | 0.800 | 0.880 |
Fig.4 Receiver operating characteristic (ROC) curves of the base models and MCF models for each modality. OCC: Oral cavity contour; DOCC: DVH parameters from OCC; C: Clinical features.
Models | AUC | ACC | SEN | SPE | |
---|---|---|---|---|---|
C+DOCC | MLP+CIFE | 0.808 | 0.800 | 0.533 | 0.960 |
MLP+t_score | 0.816 | 0.775 | 0.800 | 0.760 | |
LR+t_score | 0.856 | 0.850 | 0.800 | 0.880 | |
MCF | 0.875 | 0.850 | 0.733 | 0.920 | |
H-MCF | 0.883 | 0.850 | 0.933 | 0.800 |
Tab.4 Predictive performance of base models, MCF models, and H-MCF models for multimodal data
Models | AUC | ACC | SEN | SPE | |
---|---|---|---|---|---|
C+DOCC | MLP+CIFE | 0.808 | 0.800 | 0.533 | 0.960 |
MLP+t_score | 0.816 | 0.775 | 0.800 | 0.760 | |
LR+t_score | 0.856 | 0.850 | 0.800 | 0.880 | |
MCF | 0.875 | 0.850 | 0.733 | 0.920 | |
H-MCF | 0.883 | 0.850 | 0.933 | 0.800 |
Models | AUC | ACC | SEN | SPE |
---|---|---|---|---|
Extra trees+NDFS | 0.715 | 0.700 | 0.800 | 0.640 |
Random forest+NDFS | 0.771 | 0.700 | 0.867 | 0.600 |
Bagging+reliefF | 0.812 | 0.750 | 0.800 | 0.720 |
AdaBoost+NDFS | 0.856 | 0.825 | 0.733 | 0.880 |
GradientBoosting+NDFS | 0.736 | 0.725 | 0.733 | 0.720 |
LightGBM+NDFS | 0.816 | 0.750 | 0.733 | 0.760 |
XGBoost+NDFS | 0.749 | 0.700 | 0.600 | 0.760 |
CatBoost+MCFS | 0.781 | 0.825 | 0.733 | 0.880 |
MCF | 0.875 | 0.850 | 0.733 | 0.920 |
H-MCF | 0.883 | 0.850 | 0.933 | 0.800 |
Tab.5 Predictive performance of H-MCF compared with MCF and eight ensemble classifiers
Models | AUC | ACC | SEN | SPE |
---|---|---|---|---|
Extra trees+NDFS | 0.715 | 0.700 | 0.800 | 0.640 |
Random forest+NDFS | 0.771 | 0.700 | 0.867 | 0.600 |
Bagging+reliefF | 0.812 | 0.750 | 0.800 | 0.720 |
AdaBoost+NDFS | 0.856 | 0.825 | 0.733 | 0.880 |
GradientBoosting+NDFS | 0.736 | 0.725 | 0.733 | 0.720 |
LightGBM+NDFS | 0.816 | 0.750 | 0.733 | 0.760 |
XGBoost+NDFS | 0.749 | 0.700 | 0.600 | 0.760 |
CatBoost+MCFS | 0.781 | 0.825 | 0.733 | 0.880 |
MCF | 0.875 | 0.850 | 0.733 | 0.920 |
H-MCF | 0.883 | 0.850 | 0.933 | 0.800 |
1 | Global Cancer Observatory Cancer Today. Lyon, France International Agency for Research on Cancer.[EB/OL][8.28]. . |
2 | Zhou XT, Shao TC, Jia HJ, et al. Current state, challenges, and future perspective of adaptive radiotherapy: a narrative review of nasopharyngeal carcinoma[J]. Oral Oncol, 2024, 158: 107008. |
3 | Chen C, Zhang Q, Yu W, et al. Oral mucositis: an update on innate immunity and new interventional targets[J]. J Dent Res, 2020, 99(10): 1122-30. |
4 | Sunaga T, Nagatani A, Fujii N, et al. The association between cumulative radiation dose and the incidence of severe oral mucositis in head and neck cancers during radiotherapy[J]. Cancer Rep, 2021, 4(2): e1317. |
5 | Tan XJ, Liu JJ, Deng YK, et al. Analysis of factors related to radiation-induced oral mucositis in patients with head and neck tumors undergoing radiotherapy[J]. J Stomatol Oral Maxillofac Surg, 2024: 102042. |
6 | Saito N, Imai Y, Muto T, et al. Low body mass index as a risk factor of moderate to severe oral mucositis in oral cancer patients with radiotherapy[J]. Support Care Cancer, 2012, 20(12): 3373-7. |
7 | Wang JJ, Gu LQ, Zhi CX, et al. Risk factor and prediction model development for severe radiation-induced oral mucositis in head and neck tumors[J]. Future Oncol, 2024: 1-11. |
8 | Brown TJ, Gupta A. Management of cancer therapy-associated oral mucositis[J]. JCO Oncology Practice, 2020, 16(3): 103-9. |
9 | Manur JG, Vidyasagar N. Correlation of planning target volume with mucositis for head-and-neck cancer patients undergoing chemoradiation[J]. J Cancer Res Ther, 2020, 16(3): 565-8. |
10 | Mazzola R, Ricchetti F, Fersino S, et al. Predictors of mucositis in oropharyngeal and oral cavity cancer in patients treated with volumetric modulated radiation treatment: a dose-volume analysis[J]. Head Neck, 2016, 38(): E815-9. |
11 | Alsenan SA, Al-Turaiki IM, Hafez AM. Feature extraction methods in quantitative structure-activity relationship modeling: a com-parative study[J]. IEEE Access, 2020, 8: 78737-52. |
12 | Li PJ, Li KX, Jin T, et al. Predictive model and precaution for oral mucositis during chemo-radiotherapy in nasopharyngeal carcinoma patients[J]. Front Oncol, 2020, 10: 596822. |
13 | Hansen CR, Bertelsen A, Zukauskaite R, et al. Prediction of radiation-induced mucositis of H&N cancer patients based on a large patient cohort[J]. Radiother Oncol, 2020, 147: 15-21. |
14 | Dong YJ, Zhang J, Lam S, et al. Multimodal data integration to predict severe acute oral mucositis of nasopharyngeal carcinoma patients following radiation therapy[J]. Cancers, 2023, 15(7): 2032. |
15 | Soutome S, Yanamoto S, Nishii M, et al. Risk factors for severe radiation-induced oral mucositis in patients with oral cancer[J]. J Dent Sci, 2021, 16(4): 1241-6. |
16 | Wyatt M, Radford B, Callow N, et al. Using ensemble methods to improve the robustness of deep learning for image classification in marine environments[J]. Methods Ecol Evol, 2022, 13(6): 1317-28. |
17 | Lertampaiporn S, Vorapreeda T, Hongsthong A, et al. Ensemble-AMPPred: robust AMP prediction and recognition using the ensemble learning method with a new hybrid feature for differentiating AMPs[J]. Genes, 2021, 12(2): 137. |
18 | Yu G, Li QF, Shen DG, et al. Optimal sparse linear prediction for block-missing multi-modality data without imputation[J]. J Am Stat Assoc, 2020, 115(531): 1406-19. |
19 | Soenksen LR, Ma Y, Zeng C, et al. Integrated multimodal artificial intelligence framework for healthcare applications[J]. NPJ Digit Med, 2022, 5(1): 149. |
20 | Sousa JV, Matos P, Silva F, et al. Single modality vs. multimodality: what works best for lung cancer screening[J]? Sensors, 2023, 23(12): 5597. |
21 | Lee N, Harris J, Garden AS, et al. Intensity-modulated radiation therapy with or without chemotherapy for nasopharyngeal carcinoma: radiation therapy oncology group phase II trial 0225[J]. J Clin Oncol, 2009, 27(22): 3684-90. |
22 | You R, Liu YP, Xie YL, et al. Hyperfractionation compared with standard fractionation in intensity-modulated radiotherapy for patients with locally advanced recurrent nasopharyngeal carcinoma: a multicentre, randomised, open-label, phase 3 trial[J]. Lancet, 2023, 401(10380): 917-27. |
23 | Freites-Martínez AD, Santana N, Arias-Santiago SA, et al. Using the common terminology criteria for adverse events (CTCAE-version 5.0) to evaluate the severity of adverse events of anticancer therapies[J]. Actas Dermosifiliogr (Engl Ed), 2021, 112(1): 90-2. |
24 | Panchal A, Keyes R. dicmplyer [EB/OL]. . |
25 | Bhide SA, Gulliford S, Fowler J, et al. Characteristics of response of oral and pharyngeal mucosa in patients receiving chemo-IMRT for head and neck cancer using hypofractionated accelerated radiotherapy[J]. Radiother Oncol, 2010, 97(1): 86-91. |
Bhide SA, Gulliford S, Fowler J, et al. Characteristics of response of oral and pharyngeal mucosa in patients receiving chemo-IMRT for head and neck cancer using hypofractionated accelerated radiotherapy[J]. Radiother Oncol, 2010, 97(1): 86-91.[PubMed] | |
26 | He Q, Li X, Nathan Kim DW, et al. Feasibility study of a multi-criteria decision-making based hierarchical model for multi-modality feature and multi-classifier fusion: applications in medical prognosis prediction[J]. Inf Fusion, 2020, 55: 207-19. |
He Q, Li X, Nathan Kim DW, et al. Feasibility study of a multi-criteria decision-making based hierarchical model for multi-modality feature and multi-classifier fusion: applications in medical prognosis prediction[J]. Inf Fusion, 2020, 55: 207-19.[LinkOut] | |
27 | Chawla NV, Bowyer KW, Hall LO, et al. SMOTE: synthetic minority over-sampling technique[J]. J Artif Intell Res, 2002, 16: 321-57. |
28 | Li JD, Cheng KW, Wang SH, et al. Feature selection: a data perspective [J]. Acm Comput Surv, 2017, 50(6): 1-45. |
29 | Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in python[J]. J Mach Learn Res, 2011, 12: 2825-30. |
30 | Ye FS, Xu LX, Ren Y, et al. Predicting radiation pneumonitis in lung cancer: a EUD-based machine learning approach for volumetric modulated arc therapy patients[J]. Front Oncol, 2024, 14: 1343170. |
31 | Isaksson LJ, Pepa M, Zaffaroni M, et al. Machine learning-based models for prediction of toxicity outcomes in radiotherapy[J]. Front Oncol, 2020, 10: 790. |
32 | El-Sappagh S, Alonso JM, Islam SMR, et al. A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer’s disease[J]. Sci Rep, 2021, 11(1): 2660. |
33 | 钟伟雄, 梁芳蓉, 杨蕊梦, 等. 基于多期动态增强CT影像组学特征和多分类器分层融合模型预测肝细胞癌的微血管侵犯[J]. 南方医科大学学报, 2024, 44(2): 260-9. |
34 | Domingos P. A few useful things to know about machine learning[J]. Commun ACM, 2012, 55(10): 78-87. |
35 | Lobato-Delgado B, Priego-Torres B, Sanchez-Morillo D. Combining molecular, imaging, and clinical data analysis for predicting cancer prognosis[J]. Cancers, 2022, 14(13): 3215. |
36 | Kline A, Wang HY, Li YK, et al. Multimodal machine learning in precision health: a scoping review[J]. NPJ Digit Med, 2022, 5(1): 171. |
37 | Dietterich TG. Ensemble methods in machine learning[C]//International Workshop on Multiple Classifier Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000:1-15. |
38 | Huang KB, Gui CP, Xu YZ, et al. A multi-classifier system integrated by clinico-histology-genomic analysis for predicting recurrence of papillary renal cell carcinoma[J]. Nat Commun, 2024, 15(1): 6215. |
39 | Cai GY, Huang FJ, Gao Y, et al. Artificial intelligence-based models enabling accurate diagnosis of ovarian cancer using laboratory tests in China: a multicentre, retrospective cohort study[J]. Lancet Digit Health, 2024, 6(3): e176-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||