Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (12): 2283-2290.doi: 10.12122/j.issn.1673-4254.2024.12.03
Kun WANG1,2(), Haoxiang FANG1, Xiaomei CAO1, Ziheng ZHU3
Received:
2024-09-14
Online:
2024-12-20
Published:
2024-12-26
Contact:
Kun WANG
E-mail:yxwangk@163.com
Supported by:
Kun WANG, Haoxiang FANG, Xiaomei CAO, Ziheng ZHU. MiR-139-5p regulates the Notch/RBP-J/Hes1 axis to promote homing of bone mesenchymal stem cells in bronchial asthma[J]. Journal of Southern Medical University, 2024, 44(12): 2283-2290.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.12.03
Primer | Sequence (5' to 3') | Length (bp) |
---|---|---|
Notch1-F | CCAGGAAAGAGGGCAGC | 198 |
Notch1-R | GGAGCATCTCAAGCCTCTT | |
RBP-J-F | CAGGCATTCTACAGGAAGTTTG | 99 |
RBP-J-R | TACTGTTTGATCCCCTCGTTC | |
Hes1-F | AAACCAAAGACAGCCTCTGA | 184 |
Hes1-R | GGTGCTTCACTGTCATTTCC | |
miR139-5p-F | ACACTCCAGCTGGGTCTACAGTGCACGTGT | 66 |
miR139-5p-R | TGGTGTCGTGGAGTCG | |
β-actin-F | CCCATCTATGAGGGTTACGC | 150 |
β-actin-R | TTTAATGTCACGCACGATTTC |
Tab.1 Primer sequences for RT-qPCR
Primer | Sequence (5' to 3') | Length (bp) |
---|---|---|
Notch1-F | CCAGGAAAGAGGGCAGC | 198 |
Notch1-R | GGAGCATCTCAAGCCTCTT | |
RBP-J-F | CAGGCATTCTACAGGAAGTTTG | 99 |
RBP-J-R | TACTGTTTGATCCCCTCGTTC | |
Hes1-F | AAACCAAAGACAGCCTCTGA | 184 |
Hes1-R | GGTGCTTCACTGTCATTTCC | |
miR139-5p-F | ACACTCCAGCTGGGTCTACAGTGCACGTGT | 66 |
miR139-5p-R | TGGTGTCGTGGAGTCG | |
β-actin-F | CCCATCTATGAGGGTTACGC | 150 |
β-actin-R | TTTAATGTCACGCACGATTTC |
Group | Cell viability | G1(%) | S (%) | G2(%) |
---|---|---|---|---|
NC | 1.000±0.014 | 56.74±2.15 | 8.80±0.72 | 34.46±0.77 |
MC | 0.558±0.033Δ | 73.99±2.48 ΔΔ | 4.24±0.63ΔΔ | 21.78±0.66ΔΔ |
miR-139-5p mimics | 0.892±0.046*▲ | 62.61±1.89*▲ | 8.26±0.49*▲ | 29.13±0.72*▲ |
miR-139-5p mimics-NC | 0.544±0.122Δ | 72.94±2.49 | 5.27±0.62 | 21.79±0.94 |
Tab.2 Comparison of cell viability and cell cycle among the groups (Mean±SD, n=6)
Group | Cell viability | G1(%) | S (%) | G2(%) |
---|---|---|---|---|
NC | 1.000±0.014 | 56.74±2.15 | 8.80±0.72 | 34.46±0.77 |
MC | 0.558±0.033Δ | 73.99±2.48 ΔΔ | 4.24±0.63ΔΔ | 21.78±0.66ΔΔ |
miR-139-5p mimics | 0.892±0.046*▲ | 62.61±1.89*▲ | 8.26±0.49*▲ | 29.13±0.72*▲ |
miR-139-5p mimics-NC | 0.544±0.122Δ | 72.94±2.49 | 5.27±0.62 | 21.79±0.94 |
Group | Ave CT | 2-△△CT |
---|---|---|
NC | 18.58 | 1.00±0.04 |
MC | 19.08 | 0.54±0.05Δ |
miR-139-5p mimics | 18.77 | 0.82±0.04*▲ |
miR-139-5p mimics-NC | 19.11 | 0.55±0.02Δ |
Tab.3 Relative expression levels of miR-139 in each group (Mean±SD, n=6)
Group | Ave CT | 2-△△CT |
---|---|---|
NC | 18.58 | 1.00±0.04 |
MC | 19.08 | 0.54±0.05Δ |
miR-139-5p mimics | 18.77 | 0.82±0.04*▲ |
miR-139-5p mimics-NC | 19.11 | 0.55±0.02Δ |
Group | The homing level of BMSCs (%) |
---|---|
NC | 2.42±0.06 |
MC | 8.26±0.15Δ |
miR-139-5p mimics | 14.23±0.39*▲ |
miR-139-5p mimics-NC | 8.55±0.13Δ |
Tab.4 Comparison of homing levels of BMSCs among the groups (Mean±SD, n=3)
Group | The homing level of BMSCs (%) |
---|---|
NC | 2.42±0.06 |
MC | 8.26±0.15Δ |
miR-139-5p mimics | 14.23±0.39*▲ |
miR-139-5p mimics-NC | 8.55±0.13Δ |
Group | CXCR4 | SDF-1 |
---|---|---|
NC | 10.254±2.692 | 12.471±2.752 |
MC | 17.345±3.219ΔΔ | 16.126±2.978Δ |
miR-139-5p mimics | 20.026±3.753*▲ | 18.955±3.583*▲ |
miR-139-5p mimics-NC | 16.429±2.916ΔΔ | 17.056±2.746Δ |
Tab.5 Expressions of CXCR4 and SDF-1 in each group (Mean±SD, n=3)
Group | CXCR4 | SDF-1 |
---|---|---|
NC | 10.254±2.692 | 12.471±2.752 |
MC | 17.345±3.219ΔΔ | 16.126±2.978Δ |
miR-139-5p mimics | 20.026±3.753*▲ | 18.955±3.583*▲ |
miR-139-5p mimics-NC | 16.429±2.916ΔΔ | 17.056±2.746Δ |
Fig.1 Expressions of homing markers CXCR4 and SDF-1 in BMSCs in each group. A: NC group. B: MC group. C: miR-139-5p mimics group. D: miR-139-5p mimics-NC group.
Group | Notch1 | RBP-J | Hes1 |
---|---|---|---|
NC | 1.00±0.13 | 1.00±0.16 | 1 .00±0.07 |
MC | 2.62±0.51ΔΔ | 2.76±0.40ΔΔ | 1.94±0.17Δ |
miR-139-5p mimics | 1.81±0.10*▲ | 1.82±0.06*▲ | 1.35±0.06*▲ |
miR-139-5p mimics-NC | 2.68±0.15ΔΔ | 2.72±0.34ΔΔ | 1.88±0.07ΔΔ |
Tab.6 Expressions of Notch1, RBP-J, and Hes1 mRNA in each Group (Mean±SD, n=6)
Group | Notch1 | RBP-J | Hes1 |
---|---|---|---|
NC | 1.00±0.13 | 1.00±0.16 | 1 .00±0.07 |
MC | 2.62±0.51ΔΔ | 2.76±0.40ΔΔ | 1.94±0.17Δ |
miR-139-5p mimics | 1.81±0.10*▲ | 1.82±0.06*▲ | 1.35±0.06*▲ |
miR-139-5p mimics-NC | 2.68±0.15ΔΔ | 2.72±0.34ΔΔ | 1.88±0.07ΔΔ |
Group | Notch1 | Activated Notch1 | RBP-J | Hes1 |
---|---|---|---|---|
NC | 0.231±0.107 | 0.409±0.033 | 0.293±0.108 | 0.158±0.024 |
MC | 0.631±0.058Δ | 0.811±0.089Δ | 0.664±0.115Δ | 0.470±0.059ΔΔ |
miR-139-5p mimics | 0.452±0.034*▲ | 0.560±0.108*▲ | 0.531±0.025 | 0.314±0.048*▲ |
miR-139-5p mimics-NC | 0.645±0.030Δ | 0.822±0.053Δ | 0.680±0.083 | 0.471±0.047ΔΔ |
Tab.7 Expression of Notch1, activated Notch1, RBP-J, and Hes1 proteins in each group (Mean±SD, n=3)
Group | Notch1 | Activated Notch1 | RBP-J | Hes1 |
---|---|---|---|---|
NC | 0.231±0.107 | 0.409±0.033 | 0.293±0.108 | 0.158±0.024 |
MC | 0.631±0.058Δ | 0.811±0.089Δ | 0.664±0.115Δ | 0.470±0.059ΔΔ |
miR-139-5p mimics | 0.452±0.034*▲ | 0.560±0.108*▲ | 0.531±0.025 | 0.314±0.048*▲ |
miR-139-5p mimics-NC | 0.645±0.030Δ | 0.822±0.053Δ | 0.680±0.083 | 0.471±0.047ΔΔ |
Fig.2 Expression of Notch1, RBP-J, and Hes1 proteins in each group detected by Western blotting. A: NC group. B: MC group. C: miR-139-5p mimics group. D: miR-139-5p mimics-NC group.
Group | IL-2 | IL-12 | IL-5 | IL-9 |
---|---|---|---|---|
NC | 48.365±8.896 | 30.222±4.214 | 42.549±4.651 | 15.644±2.492 |
MC | 42.316±4.736Δ | 20.374±2.392Δ | 49.626±3.794Δ | 29.435±3.264ΔΔ |
miR-139-5p mimics | 45.263±6.587*▲ | 21.463±3.442 | 45.623±4.532*▲ | 20.486±2.785**▲▲ |
miR-139-5p mimics-NC | 43.542±5.093Δ | 19.587±2.518Δ | 48.042±5.758Δ | 28.929±2.552ΔΔ |
Tab.8 Expression levels of Th1 and Th2 cytokines in each group (ng/mL, Mean±SD, n=10)
Group | IL-2 | IL-12 | IL-5 | IL-9 |
---|---|---|---|---|
NC | 48.365±8.896 | 30.222±4.214 | 42.549±4.651 | 15.644±2.492 |
MC | 42.316±4.736Δ | 20.374±2.392Δ | 49.626±3.794Δ | 29.435±3.264ΔΔ |
miR-139-5p mimics | 45.263±6.587*▲ | 21.463±3.442 | 45.623±4.532*▲ | 20.486±2.785**▲▲ |
miR-139-5p mimics-NC | 43.542±5.093Δ | 19.587±2.518Δ | 48.042±5.758Δ | 28.929±2.552ΔΔ |
Index | miR-139-5p | Notch1 | Activated Notch1 | RBP-J | Hes1 | IL-2 | IL-12 | IL-5 | IL-9 |
---|---|---|---|---|---|---|---|---|---|
The homing level of BMSCs | 0.626* | 0.353 | 0.142 | 0.259 | 0.316 | 0.213 | 0.634* | -0.598* | 0.186 |
CXCR4 | 0.317 | 0.033 | -0.605* | 0.363 | -0.034 | -0.167 | 0.069 | 0.104 | 0.199 |
SDF-1 | 0.678* | -0.547* | 0.336 | 0.260 | 0.143 | -0.158 | -0.368 | 0.179 | 0.167 |
Tab.9 Correlation analysis of miR139-5p, Th1/Th2 factors and the Notch pathway (correlation coefficient)
Index | miR-139-5p | Notch1 | Activated Notch1 | RBP-J | Hes1 | IL-2 | IL-12 | IL-5 | IL-9 |
---|---|---|---|---|---|---|---|---|---|
The homing level of BMSCs | 0.626* | 0.353 | 0.142 | 0.259 | 0.316 | 0.213 | 0.634* | -0.598* | 0.186 |
CXCR4 | 0.317 | 0.033 | -0.605* | 0.363 | -0.034 | -0.167 | 0.069 | 0.104 | 0.199 |
SDF-1 | 0.678* | -0.547* | 0.336 | 0.260 | 0.143 | -0.158 | -0.368 | 0.179 | 0.167 |
1 | Maldonado-Puebla M, Cardet JC. The international variation in asthma phenotypes[J]. Allergy Asthma Immunol Res,2024,16(4):317-9. |
2 | Xu YD, Cheng M, Mao JX, et al. Clara cell 10 (CC10) protein attenuates allergic airway inflammation by modulating lung dendritic cell functions[J]. Cell Mol Life Sci, 2024, 81(1): 321. |
3 | Hu Y, Wang MQ, Xie J, et al. Exposure to ephedrine attenuates Th1/Th2 imbalance underlying OVA-induced asthma through airway epithelial cell-derived exosomal lnc-TRPM2-AS[J]. Chin J Nat Med, 2024, 22(6): 530-40. |
4 | Hong XN, Jiang MY, Kho AT, et al. Circulating miRNAs associate with historical childhood asthma hospitalization in different serum vitamin D groups[J]. Respir Res, 2024, 25(1): 118. |
5 | Zhang M, Han Y. MicroRNAs in chronic pediatric diseases (Review)[J]. Exp Ther Med, 2024, 27(3): 100. 27(3):100. |
6 | Hernández-Díazcouder A, Romero-Nava R, Del-Río-Navarro BE, et al. The roles of microRNAs in asthma and emerging insights into the effects of vitamin D3 supplementation[J]. Nutrients, 2024, 16(3): 341. |
7 | Zhu MX, Huang LH, Zhu YK, et al. LncRNA NEAT1 promotes airway smooth muscle cell inflammation by activating the JAK3/STAT5 pathway through targeting of miR-139[J]. Exp Lung Res, 2021, 47(4): 161-72. |
8 | Musri MM, Coll-Bonfill N, Maron BA, et al. MicroRNA dysregulation in pulmonary arteries from chronic obstructive pulmonary disease. relationships with vascular remodeling[J]. Am J Respir Cell Mol Biol, 2018, 59(4): 490-9. |
9 | Huang JJ, Hu Y, Wang YX, et al. Activation of Notch1-GATA3 pathway in asthma bronchial epithelial cells induced by acute PM2.5 exposure and the potential protective role of microRNA-139-5p[J]. J Asthma, 2024, 61(9): 959-69. |
10 | 王 坤, 朱慧志, 杨 磊, 等. MiR-139下调Notch1/Hes1通路促进骨髓间充质干细胞归巢于哮喘大鼠肺组织抑制Th2细胞炎症反应[J]. 细胞与分子免疫学杂志, 2021, 37(2): 97-104. |
11 | Meng J, Gao X, Liu XJ, et al. Effects of xenogeneic transplantation of umbilical cord-derived mesenchymal stem cells combined with irbesartan on renal podocyte damage in diabetic rats[J]. Stem Cell Res Ther, 2024, 15(1): 239. |
12 | Palmans E, Kips JC, Pauwels RA. Prolonged allergen exposure induces structural airway changes in sensitized rats[J]. Am J Respir Crit Care Med, 2000, 161(2 Pt 1): 627-35. |
13 | Chen XD, Yong SB, Yii CY, et al. Intestinal microbiota and probiotic intervention in children with bronchial asthma[J]. Heliyon, 2024, 10(15): e34916. |
14 | Duraisamy SK, Sundar IK. REV-ERBα agonist SR10067 attenuates Th2 cytokine-mediated barrier dysfunction in human bronchial epithelial cells[J]. Clin Sci, 2024, 138(19): 1209-26. |
15 | Wang K, Liu T, Zhang Y,et al.Combined Placental Mesenchymal Stem Cells with Guided Nanoparticles Effective Against Diabetic Nephropathy in Mouse Model [J]. Int J Nanomedicine, 2024, 19:901-15. |
16 | Chen QH, Zhang Y, Gu X, et al. Microvesicles derived from mesenchymal stem cells inhibit acute respiratory distress syndrome-related pulmonary fibrosis in mouse partly through hepatocyte growth factor[J]. World J Stem Cells, 2024, 16(8): 811-23. |
17 | Jiang ZW, Chen LL, Huang L, et al. Bioactive materials that promote the homing of endogenous mesenchymal stem cells to improve wound healing[J]. Int J Nanomedicine, 2024, 19: 7751-73. |
18 | Yuan Y, Tan SF, Wang HH, et al. Mesenchymal stem cell-derived exosomal miRNA-222-3p increases Th1/Th2 ratio and promotes apoptosis of acute myeloid leukemia cells[J]. Anal Cell Pathol, 2023, 2023: 4024887. |
19 | Schmelzer E, Miceli V, Chinnici CM, et al. Effects of mesenchymal stem cell coculture on human lung small airway epithelial cells[J]. Biomed Res Int, 2020, 2020: 9847579. |
20 | Lin Q, Yu TX, Li XH, et al. Umbilical cord mesenchymal stem cells inhibited inflammation of bronchial epithelial cells by regulating Hedgehog pathway[J]. Eur J Histochem, 2023, 67(4): 3908. |
21 | Yang J, Xue J, Hu W, et al. Human embryonic stem cell-derived mesenchymal stem cell secretome reverts silica-induced airway epithelial cell injury by regulating Bmi1 signaling[J]. ToxicolEnviron, 2023, 38(9): 2084-99. |
22 | Wang Y, Fang JK, Liu BM, et al. Reciprocal regulation of mesenchymal stem cells and immune responses[J]. Cell Stem Cell, 2022, 29(11): 1515-30. |
23 | Nie Y, Yang BK, Hu JF, et al. Bruceine D ameliorates the balance of Th1/Th2 in a mouse model of ovalbumin-induced allergic asthma via inhibiting the NOTCH pathway[J]. Allergol Immunopathol, 2021, 49(6): 73-9. |
24 | Gioftsidi S, Relaix F, Mourikis P. The Notch signaling network in muscle stem cells during development, homeostasis, and disease[J]. Skelet Muscle, 2022, 12(1): 9. |
25 | Yu MX, Zhou M, Li JH, et al. Notch-activated mesenchymal stromal/stem cells enhance the protective effect against acetaminophen-induced acute liver injury by activating AMPK/SIRT1 pathway[J]. Stem Cell Res Ther, 2022, 13(1): 318. |
26 | Wang YZ, Yao B, Duan XL, et al. Notch1 down-regulation in lineage-restricted niches is involved in the development of mouse eccrine sweat glands[J]. J Mol Histol, 2022, 53(5): 857-67. |
27 | Ho PTB, Clark IM, Le LTT. MicroRNA-based diagnosis and therapy[J]. Int J Mol Sci, 2022, 23(13): 7167. |
28 | Wang K, Jiang XL, Jiang Y, et al. EZH2-H3K27me3-mediated silencing of mir-139-5p inhibits cellular senescence in hepatocellular carcinoma by activating TOP2A[J]. J Exp Clin Cancer Res, 2023, 42(1): 320. |
29 | Li SZ, Ren KX, Zhao J, et al. MiR-139/PDE2A-Notch1 feedback circuit represses stemness of gliomas by inhibiting Wnt/β‑catenin signaling[J]. Int J Biol Sci, 2021, 17(13): 3508-21. |
30 | Chen HB, Gong XY, Shen WH, et al. Exosomal AC068768.1 enhances the proliferation, migration, and invasion of laryngeal squamous cell carcinoma through miR-139-5p/NOTCH1 axis[J]. Heliyon, 2024, 10(16): e36358. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||