1 |
Rutkowski B, Tam P, van der Sande FM, et al. Residual renal function and effect of low-sodium solution on blood pressure in peritoneal dialysis patients[J]. Perit Dial Int, 2019, 39(4): 335-43.
|
2 |
Zhou Y, He WM, Sun W, et al. Sulfotanshinone IIA sodium ameliorates glucose peritoneal dialysis solution-induced human peritoneal mesothelial cell injury via suppression of ASK1-P38-mediated oxidative stress[J]. Cell Physiol Biochem, 2018, 46(6): 2434-44.
|
3 |
Díaz R, Sandoval P, Rodrigues-Diez RR, et al. Increased miR-7641 levels in peritoneal hyalinizing vasculopathy in long-term peritoneal dialysis patients[J]. Int J Mol Sci, 2020, 21(16): 5824.
|
4 |
Shu DY, Butcher E, Saint-Geniez M. EMT and EndMT: emerging roles in age-related macular degeneration[J]. Int J Mol Sci, 2020, 21(12): 4271.
|
5 |
Goumans MJ, van Zonneveld AJ, ten Dijke P. Transforming growth factor beta-induced endothelial-to-mesenchymal transition: a switch to cardiac fibrosis[J]? Trends Cardiovasc Med, 2008, 18(8): 293-8.
|
6 |
Lee FT, Mountain AJ, Kelly MP, et al. Enhanced efficacy of radioimmunotherapy with 90Y-CHX-A''‑DTPA-hu3S193 by inhibition of epidermal growth factor receptor (EGFR) signaling with EGFR tyrosine kinase inhibitor AG1478[J]. Clin Cancer Res, 2005, 11(19 Pt 2): 7080s-6s.
|
7 |
边晓涵, 雷洋洋, 崔佳欣, 等. 中药调控TGF-β1/Smad信号通路防治腹膜透析腹膜纤维化[J/OL]. 中医学报, 中医学报,
|
8 |
Xu LH, Shen PQ, Bi YL, et al. Danshen injection ameliorates STZ-induced diabetic nephropathy in association with suppression of oxidative stress, pro-inflammatory factors and fibrosis[J]. Int Immunopharmacol, 2016, 38: 385-94.
|
9 |
Chen G, Jin Z, Wang X, et al. Danshen injection mitigated the cerebral ischemia/reperfusion injury by suppressing neuro-inflammation via the HIF-1α/CXCR4/NF‑κB signaling pathway[J]. Neuroreport, 2024, 35(10): 601-11.
|
10 |
陈 飞, 步青云, 包晓燕, 等. 基于p38MAPK通路研究丹参注射液对糖尿病大鼠心肌纤维化的影响[J]. 浙江临床医学, 2018, 20(8): 1327-9.
|
11 |
何伟明, 高 坤, 周 栋, 等. 丹参注射液对脂多糖致腹膜纤维化大鼠腹膜TGF-β1、MMP9、TIMP1的影响[J]. 长春中医药大学学报, 2012, 28(1): 25-9.
|
12 |
Xu Y, Kovacic JC. Endothelial to mesenchymal transition in health and disease[J]. Annu Rev Physiol, 2023, 85: 245-67.
|
13 |
Masola V, Bonomini M, Onisto M, et al. Biological effects of XyloCore, a glucose sparing PD solution, on mesothelial cells: focus on mesothelial-mesenchymal transition, inflammation and angiogenesis[J]. Nutrients, 2021, 13(7): 2282.
|
14 |
Liu F, Yu C, Qin H, et al. Nintedanib attenuates peritoneal fibrosis by inhibiting mesothelial-to-mesenchymal transition, inflammation and angiogenesis[J]. J Cell Mol Med, 2021, 25(13): 6103-14.
|
15 |
赵君谊, 单 云, 朱晓琳, 等. 黄芪多糖对高糖腹透液诱导HMrSV5细胞凋亡的影响[J]. 中华中医药学刊, 2020, 38(10): 113-7, 22-3.
|
16 |
张 蓓, 李默影, 吴 彤, 等. 市售丹参注射液的质量比较研究[J]. 中国医药工业杂志, 2021, 52(11): 1495-500.
|
17 |
张慧杰, 任晓亮, 孙立丽, 等. 丹参注射液研究进展[J]. 中南药学, 2016, 14(11): 1168-73.
|
18 |
谷 风, 沈祖泓, 曾远强, 等. 丹参注射液对输卵管炎大鼠输卵管组织Smad3mRNA表达的影响[J]. 中国中医药科技, 2015, 22(5): 500-1, 503.
|
19 |
Du JK, Yu Q, Liu YJ, et al. A novel role of kallikrein-related peptidase 8 in the pathogenesis of diabetic cardiac fibrosis[J]. Theranostics, 2021, 11(9): 4207-31.
|
20 |
Jordan NP, Tingle SJ, Shuttleworth VG, et al. MiR-126-3p is dynamically regulated in endothelial-to-mesenchymal transition during fibrosis[J]. Int J Mol Sci, 2021, 22(16): 8629.
|
21 |
Piera-Velazquez S, Jimenez SA. Endothelial to mesenchymal transition: role in physiology and in the pathogenesis of human diseases[J]. Physiol Rev, 2019, 99(2): 1281-324.
|
22 |
Kadoya H, Hirano A, Umeno R, et al. Activation of the inflammasome drives peritoneal deterioration in a mouse model of peritoneal fibrosis[J]. FASEB J, 2023, 37(9): e23129.
|
23 |
Wu ZC, Zuo XZ, Wang XR, et al. The probiotic Lactobacillus casei Zhang-mediated correction of gut dysbiosis ameliorates peritoneal fibrosis by suppressing macrophage-related inflammation via the butyrate/PPAR‑γ/NF‑κB pathway[J]. Food Funct, 2023, 14(15): 6840-52.
|
24 |
宋光永. 幽门螺杆菌感染依赖NF-κB通路介导的炎症上清促进结肠上皮细胞发生EMT的作用机制研究[D]. 太原: 山西医科大学, 2019.
|
25 |
Liu J, Wu X, Liu YC, et al. High-glucose-based peritoneal dialysis solution induces the upregulation of VEGF expression in human peritoneal mesothelial cells: the role of pleiotrophin[J]. Int J Mol Med, 2013, 32(5): 1150-8.
|
26 |
Ro YT, Patterson JL. Transcriptional induction of TGF‑β1 and endothelial-to-mesenchymal transition cell markers in human umbilical vein endothelial cells by Ebola virus infection[J]. Genes Genomics, 2022, 44(12): 1499-507.
|
27 |
Ma J, Sanchez-Duffhues G, Goumans MJ, et al. TGF‑β‑induced endothelial to mesenchymal transition in disease and tissue engineering[J]. Front Cell Dev Biol, 2020, 8: 260.
|
28 |
Su Q, Chen X, Ling X, et al. SUMOylation of Smad2 mediates TGF-β‑regulated endothelial-mesenchymal transition[J]. J Biol Chem, 2023, 299(10): 105244.
|
29 |
Huang Q, Xiao R, Lu J, et al. Endoglin aggravates peritoneal fibrosis by regulating the activation of TGF‑β/ALK/Smads signaling[J]. Front Pharmacol, 2022, 13: 973182.
|
30 |
Yao Q, Pawlaczyk K, Ayala ER, et al. The role of the TGF/Smad signaling pathway in peritoneal fibrosis induced by peritoneal dialysis solutions[J]. Nephron Exp Nephrol, 2008, 109(2): e71-8.
|
31 |
Zhang Y, Feng WD, Peng X, et al. Parthenolide alleviates peritoneal fibrosis by inhibiting inflammation via the NF‑κB/TGF‑β/Smad signaling axis[J]. Lab Invest, 2022, 102(12): 1346-54.
|
32 |
Wang LY, Fan JQ, Yang T, et al. Investigating the therapeutic effects and mechanisms of Roxadustat on peritoneal fibrosis Based on the TGF‑β/Smad pathway[J]. Biochem Biophys Res Commun, 2024, 693: 149387.
|
33 |
Humeres C, Shinde AV, Hanna A, et al. Smad7 effects on TGF-β and ErbB2 restrain myofibroblast activation and protect from postinfarction heart failure[J]. J Clin Invest, 2022, 132(3): e146926.
|
34 |
Hu YP, He J, He LH, et al. Expression and function of Smad7 in autoimmune and inflammatory diseases[J]. J Mol Med, 2021, 99(9): 1209-20.
|
35 |
Ji Y, Dou YN, Zhao QW, et al. Paeoniflorin suppresses TGF‑β mediated epithelial-mesenchymal transition in pulmonary fibrosis through a Smad-dependent pathway[J]. Acta Pharmacol Sin, 2016, 37(6): 794-804.
|
36 |
Wu SP, Yang Z, Li FR, et al. Smad7-overexpressing rat BMSCs inhibit the fibrosis of hepatic stellate cells by regulating the TGF-β1/Smad signaling pathway[J]. Exp Ther Med, 2017, 14(3): 2568-76.
|
37 |
Bai YW, Wang LL, TingYang, et al. Silymarin ameliorates peritoneal fibrosis by inhibiting the TGF‑β/Smad signaling pathway[J]. Naunyn Schmiedebergs Arch Pharmacol, 2023, 396(10): 2379-91.
|