Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (11): 2227-2234.doi: 10.12122/j.issn.1673-4254.2024.11.20
Yan YU1(), Junyuan CAO2, Rong LIU1, Minmin ZHOU2, Jinyan WEI1, Hairui ZHENG1, Wei WANG2, Gang LI1(
)
Received:
2024-03-04
Online:
2024-11-20
Published:
2024-11-29
Contact:
Gang LI
E-mail:840947999@qq.com;lg@smu.edu.cn
Yan YU, Junyuan CAO, Rong LIU, Minmin ZHOU, Jinyan WEI, Hairui ZHENG, Wei WANG, Gang LI. Development of a new platform for testing antiviral drugs using coronavirus-infected human nasal mucosa organoids[J]. Journal of Southern Medical University, 2024, 44(11): 2227-2234.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.11.20
Sample number | Source | Passage number | Days | Cryopreservation date | Culture status |
---|---|---|---|---|---|
RNM-0126 | Respiratory region | P1 | 4 | 2021-12-17 | Success |
RNM-0179 | Respiratory region | P1 | 6 | 2021-12-28 | Success |
ONM-0325 | Olfactoryactory region | P0 | 4 | 2022-01-08 | Success |
RNM-0160 | Respiratory region | P2 | 10 | 2022-03-10 | Success |
RNM-0234 | Respiratory region | P1 | 8 | 2022-03-10 | Success |
RNM-0370 | Respiratory region | P0 | 0 | 2022-03-10 | Failure |
RNM-0328 | Respiratory region | P1 | 6 | 2022-03-14 | Success |
RNM-0344 | Respiratory region | P0 | 8 | 2022-03-16 | Success |
RNM-0350 | Respiratory region | P0 | 7 | 2022-03-16 | Success |
RNM-0351 | Respiratory region | P0 | 7 | 2022-03-16 | Success |
ONM-0375 | Olfactoryactory region | P0 | 10 | 2022-03-18 | Success |
RNM-0359 | Respiratory region | P1 | 5 | 2022-03-21 | Failure |
RNM-0408 | Respiratory region | P0 | 8 | 2022-03-23 | Success |
ONM-0489 | Olfactoryactory region | P0 | 8 | 2022-03-23 | Success |
Tab.1 Nasal mucosa sample information
Sample number | Source | Passage number | Days | Cryopreservation date | Culture status |
---|---|---|---|---|---|
RNM-0126 | Respiratory region | P1 | 4 | 2021-12-17 | Success |
RNM-0179 | Respiratory region | P1 | 6 | 2021-12-28 | Success |
ONM-0325 | Olfactoryactory region | P0 | 4 | 2022-01-08 | Success |
RNM-0160 | Respiratory region | P2 | 10 | 2022-03-10 | Success |
RNM-0234 | Respiratory region | P1 | 8 | 2022-03-10 | Success |
RNM-0370 | Respiratory region | P0 | 0 | 2022-03-10 | Failure |
RNM-0328 | Respiratory region | P1 | 6 | 2022-03-14 | Success |
RNM-0344 | Respiratory region | P0 | 8 | 2022-03-16 | Success |
RNM-0350 | Respiratory region | P0 | 7 | 2022-03-16 | Success |
RNM-0351 | Respiratory region | P0 | 7 | 2022-03-16 | Success |
ONM-0375 | Olfactoryactory region | P0 | 10 | 2022-03-18 | Success |
RNM-0359 | Respiratory region | P1 | 5 | 2022-03-21 | Failure |
RNM-0408 | Respiratory region | P0 | 8 | 2022-03-23 | Success |
ONM-0489 | Olfactoryactory region | P0 | 8 | 2022-03-23 | Success |
Fig.1 Observation of growth of nasal mucosal organoids under inverted microscope at different time points and HE staining of the organoids on Day 5, P25 (Scale bar=100 μm).
Fig.3 Modeling of SARS-CoV-2 infection in nasal mucosal organoids. A: Virus content in the supernatant at different time points following infection ay MOI of 1 and 10. B: Detection of viral content in the supernatant following infection with different viruses. *P<0.05, ***P<0.001, ****P<0.0001.
Fig.4 Immunohistochemistry for detecting coronavirus receptors and immunofluorescence staining for detecting SARS-CoV-2-infected goblet cells (scale bar=50 μm). A: Immunohistochemistry analysis of ACE2 and TMPRSS2, the key proteins for coronavirus infection (scale bar: 50 μm). B: Immunofluorescence staining of goblet cells infected by SARS-CoV-2 showing DAPI staining of the cell nuclei, MUC5AC staining of goblet cells, and viral nucleoprotein.
Fig.5 Inhibitory effect of the drugs for testing on SARS-CoV-2 in human nasal mucosal organoids. A: Camostat dose-dependently inhibits SARS-CoV-2 infection in human nasal mucosal organoids. B: Bergamottin dose-dependently inhibits SARS-CoV-2 infection in human nasal mucosal organoids. **P<0.01, ***P<0.001, ****P<0.0001 vs DMSO.
Fig.6 Bergamottin and camostat interact with ACE2 to block coronavirus infection. A: Docking position of bergamottin with human ACE2. B: Docking position of camostat with human ACE2. C: Binding position of lisinopril with human ACE2. D: Binding details of lisinopril with human ACE2. E: Docking energy of bergamottin, camostat and lisinopril against human ACE2.
1 | Ballard DH, Boyer CJ, Alexander JS. Organoids-Preclinical Models of Human Disease[J]. N Engl J Med, 2019, 380(20): 1981-2. |
2 | Kondo J, Inoue M. Application of cancer organoid model for drug screening and personalized therapy[J]. Cells, 2019, 8(5): 470. |
3 | Cleary SJ, Pitchford SC, Amison RT, et al. Animal models of mechanisms of SARS-CoV-2 infection and COVID-19 pathology[J]. Br J Pharmacol, 2020, 177(21): 4851-65. |
4 | Papazian D, Wurtzen PA, Hansen SW. Polarized airway epithelial models for immunological Co-Culture Studies[J]. Int Arch Allergy Immunol, 2016, 170(1): 1-21. |
5 | Qin X, Sufi J, Vlckova P, et al. Cell-type-specific signaling networks in heterocellular organoids[J]. Nat Methods, 2020, 17(3): 335-42. |
6 | Charles DD, Fisher JR, Hoskinson SM, et al. Development of a novel ex vivo nasal epithelial cell model supporting colonization with human nasal microbiota[J]. Front Cell Infect Microbiol, 2019, 9 165. |
7 | Antoni D, Burckel H, Josset E, et al. Three-dimensional cell culture: a breakthrough in vivo [J]. Int J Mol Sci, 2015, 16(3): 5517-27. |
8 | Li C, Chiu MC, Yu Y, et al. Establishing human lung organoids and proximal differentiation to generate mature airway organoids[J]. J Vis Exp, 2022, (181). |
9 | Zou L, Ruan F, Huang M, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients[J]. N Engl J Med, 2020, 382(12): 1177-9. |
10 | Wang XW, Xia TL, Tang HC, et al. Establishment of a patient-derived organoid model and living biobank for nasopharyngeal carcinoma[J]. Ann Transl Med, 2022, 10(9): 526. |
11 | Liu Y, Zhou Y, Chen P. Lung cancer organoids: models for preclinical research and precision medicine[J]. Front Oncol, 2023, 13 1293441. |
12 | Schutgens F, Clevers H. Human organoids: tools for understanding biology and treating diseases[J]. Annu Rev Pathol, 2020, 15, 211-34. |
13 | Tsang JO, Zhou J, Zhao X, et al. Development of three-dimensional human intestinal organoids as a physiologically relevant model for characterizing the viral replication kinetics and antiviral susceptibility of enteroviruses[J]. Biomedicines, 2021, 9(1). |
14 | Bredenoord AL, Clevers H, Knoblich JA. Human tissues in a dish: The research and ethical implications of organoid technology[J]. Science, 2017, 355(6322). |
15 | Li M, Izpisua Belmonte JC. Organoids - Preclinical Models of Human Disease. Reply. N Engl J Med, 2019, 380(20): 1982. |
16 | Shapira T, Monreal IA, Dion SP, et al. A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic[J]. Nature, 2022, 605(7909): 340-8. |
17 | Elbadawy M, Kato Y, Saito N, et al. Establishment of intestinal organoid from rousettus leschenaultii and the susceptibility to bat-associated viruses, SARS-CoV-2 and Pteropine Orthoreovirus[J]. Int J Mol Sci, 2021, 22(19). |
18 | Lamers MM, Beumer J, van der Vaart J, et al. SARS-CoV-2 productively infects human gut enterocytes[J]. Science, 2020, 369(6499): 50-4. |
19 | Han Y, Duan X, Yang L, et al. Identification of SARS-CoV-2 inhibitors using lung and colonic organoids[J]. Nature, 2021, 589(7841): 270-5. |
20 | Chiu MC, Li C, Liu X, et al. A bipotential organoid model of respiratory epithelium recapitulates high infectivity of SARS-CoV-2 Omicron variant[J]. Cell Discov, 2022, 8(1): 57. |
21 | 汪 珂, 于 言, 韩 日. 可用于新冠病毒研究的鼻粘膜类器官模型的建立[J]. 南方医科大学学报, 2022, 42(6): 868-77. |
22 | Hsu KC, Chen YF, Lin SR, et al. iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis[J]. BMC Bioinformatics, 2011, 12(Suppl 1): S33. |
23 | Zhang L, Li Q, Liu Q, et al. A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system[J]. Hum Vaccin Immunother, 2017, 13(8): 1811-7. |
24 | Su S, Wong G, Shi W, et al. Epidemiology, Genetic recombination, and pathogenesis of coronaviruses[J]. Trends Microbiol, 2016, 24(6): 490-502. |
25 | Lednicky JA, Waltzek TB, McGeehan E, et al. Isolation and genetic characterization of human coronavirus NL63 in primary human renal proximal tubular epithelial cells obtained from a commercial supplier, and confirmation of its replication in two different types of human primary kidney cells. Virol J, 2013, 10 213. |
26 | Sungnak W, Huang N, Becavin C, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med, 2020, 26(5): 681-7. |
27 | Wu CT, Lidsky PV, Xiao Y, et al. SARS-CoV-2 replication in airway epithelia requires motile cilia and microvillar reprogramming. Cell, 2023, 186(1): 112-30. e20. |
28 | Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 2020, 181(2): 271-80. e8. |
29 | Zhou M, Liu Y, Cao J, et al. Bergamottin, a bioactive component of bergamot, inhibits SARS-CoV-2 infection in golden Syrian hamsters. Antiviral Res, 2022, 204 105365. |
30 | Antunes JL, Amado J, Veiga F, et al. Nanosystems, drug molecule functionalization and intranasal delivery: an update on the most promising strategies for increasing the therapeutic efficacy of antidepressant and anxiolytic drugs[J]. Pharmaceutics, 2023, 15(3). |
31 | Ferreira MD, Duarte J, Veiga F, et al. Nanosystems for brain targeting of antipsychotic drugs: an update on the most promising nanocarriers for increased bioavailability and therapeutic efficacy[J]. Pharmaceutics, 2023, 15(2). |
32 | Alberto M, Paiva-Santos AC, Veiga F, et al. Lipid and polymeric nanoparticles: successful strategies for nose-to-brain drug delivery in the treatment of depression and anxiety disorders[J]. Pharmaceutics, 2022, 14(12). |
33 | Ulusoy S, Bayar Muluk N, Karpischenko S, et al. Mechanisms and solutions for nasal drug delivery-a narrative review[J]. Eur Rev Med Pharmacol Sci, 2022, 26(2 ): 72-81. |
[1] | WANG Ke, YU Yan, HAN Ri, WANG Xianwen, ZHAO Yunteng, TANG Haocheng, LI Gang. Establishment of a culture system for human nasal mucosa organoids with controllable differentiation [J]. Journal of Southern Medical University, 2022, 42(6): 868-877. |
[2] | . ADS-J1 antagonizes semen-derived enhancer of virus infection-mediated enhancement of transmitted founder HIV-1 and its matched chronic control strain infection [J]. Journal of Southern Medical University, 2018, 38(02): 211-. |
[3] | . Effect of deoxycholic acid intervention on growth of ileum organoids derived from C57BL/6 mice [J]. Journal of Southern Medical University, 2017, 37(01): 6-. |
[4] | WU Wei-qiu1, HUANG Sheng-guang2, MA Zong1, ZHANG Yong-quan1, SHI Jian-bo3. Effects of irrigating solution of Sihuang on morphology and function of nasal mucosa following surgery for chronic sinusitis and nasal polyps [J]. Journal of Southern Medical University, 2005, 25(04): 424-427. |
[5] | YANG Zhan-qing1, YU Shou-yi1, NIE Jun1, CHEN Qing1, LI Zhi-feng1, LIU Yun-xi2, ZHANG Jin-lan3, XU Jian-jiang2, YU Xiao-ming2, BU Xiu-ping2, SU Jing-jing2. Prevalence of hemorrhagic fever with renal syndrome virus in domestic pigs:an epidemiological investigation in Shandong province [J]. Journal of Southern Medical University, 2004, 24(11): 1283-1286. |
[6] | YU Li-xin, WANG Zhi-peng, FU Shao-jie, WANG Yi-bin, DU Chu-fu, XU Jian, DENG Wen-feng. Hepatitis C virus infection and clinical outcome of kidney transplantation [J]. Journal of Southern Medical University, 2004, 24(06): 682-684. |
[7] | FU Wei-jun, GU Miao-ning, CHEN Zhong-qing, XIAO Jin-fang, HUANG Yi-ran, ZHOU Wei, CHEN Ye-ming. Respiratory distress syndrome induced by immersion in seawater:a study of canine models [J]. Journal of Southern Medical University, 2004, 24(06): 665-669. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||