Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (10): 1947-1954.doi: 10.12122/j.issn.1673-4254.2024.10.13
Hongxiao WANG1(), Detao TAO2,3(
), Junjie MA1, Donglin ZHANG1,3, Zuoyuan SHEN1, Chao DENG1,3(
), Jingping ZHOU1,3(
)
Received:
2024-07-25
Online:
2024-10-20
Published:
2024-10-31
Contact:
Chao DENG, Jingping ZHOU
E-mail:1492673419@qq.com;taodetao@wnmc.edu.cn;20120015@wnmc.edu.cn;19950008@wnmc.edu.cn
Hongxiao WANG, Detao TAO, Junjie MA, Donglin ZHANG, Zuoyuan SHEN, Chao DENG, Jingping ZHOU. Cisplatin promotes TNF‑α autocrine to trigger RIP1/RIP3/MLKL-dependent necroptosis of human head and neck squamous cell carcinoma cells[J]. Journal of Southern Medical University, 2024, 44(10): 1947-1954.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.10.13
Fig.2 Western blotting for detecting expression of caspase-8 protein in HN4 (A) and SCC4 cells (B) with different treatments. ##P<0.01, #P<0.05 vs CDDP group.
Fig.3 Western blotting for detecting protein expression levels of RIP1, RIP3, and MLKL in HN4 (A) and SCC4 cells (B) with cisplatin-induced necroptosis. *P<0.05, **P<0.01, ****P<0.0001 vs control group.
Fig.4 Western blotting for detecting protein expressions of epithelial-mesenchymal transition (EMT) marker proteins in HN4 (A) and SCC4 cells (B) with cisplatin-induced necroptosis. *P<0.05, **P<0.01, ***P<0.001 vs control group. ##P<0.01 vs CDDP group.
Fig.6 Western blotting for detecting expressions of TNF-α and NF-κB (p65) proteins in HN4 (A) and SCC4 cells (B) with cisplatin-induced necroptosis. *P<0.05, **P<0.01, ****P<0.0001 vs control group.
1 | Mohapatra P, Mohanty S, Ansari SA, et al. CMTM6 attenuates cisplatin-induced cell death in OSCC by regulating AKT/c-Myc-driven ribosome biogenesis[J]. FASEB J, 2022, 36(10): e22566. |
2 | Feng YY, Cao XD, Zhao B, et al. Nitrate increases cisplatin chemosensitivity of oral squamous cell carcinoma via REDD1/AKT signaling pathway[J]. Sci China Life Sci, 2021, 64(11): 1814-28. |
3 | Sasaya T, Kubo T, Murata K, et al. Cisplatin-induced HSF1-HSP90 axis enhances the expression of functional PD-L1 in oral squamous cell carcinoma[J]. Cancer Med, 2023, 12(4): 4605-15. |
4 | Choi HS, Kim YK, Yun PY. Cisplatin plus cetuximab inhibits cisplatin-resistant human oral squamous cell carcinoma cell migration and proliferation but does not enhance apoptosis[J]. Int J Mol Sci, 2021, 22(15): 8167. |
5 | Tang DL, Kang R, Berghe TV, et al. The molecular machinery of regulated cell death[J]. Cell Res, 2019, 29(5): 347-64. |
6 | Miao YD, Quan WX, Dong X, et al. A bibliometric analysis of ferroptosis, necroptosis, pyroptosis, and cuproptosis in cancer from 2012 to 2022[J]. Cell Death Discov, 2023, 9(1): 129. |
7 | Liu ZG, Jiao DL. Necroptosis, tumor necrosis and tumorigenesis[J]. Cell Stress, 2019, 4(1): 1-8. |
8 | Gong YT, Fan ZY, Luo GP, et al. The role of necroptosis in cancer biology and therapy[J]. Mol Cancer, 2019, 18(1): 100. |
9 | 王 芳, 李开颖, 蔡振宇. 程序性细胞死亡与肿瘤[J]. 中国细胞生物学学报, 2022, 44(4): 539-50. |
10 | Zhu XD, Li SL. Ferroptosis, necroptosis, and pyroptosis in gastrointestinal cancers: the chief culprits of tumor progression and drug resistance[J]. Adv Sci, 2023, 10(26): e2300824. |
11 | Liu L, Huang L, Chen WZ, et al. Comprehensive analysis of necroptosis-related long noncoding RNA immune infiltration and prediction of prognosis in patients with colon cancer[J]. Front Mol Biosci, 2022, 9: 811269. |
12 | Wang L, Hu CH, Zhao Y, et al. Novel smac mimetic ASTX660 (Tolinapant) and TNF‑α synergistically induce necroptosis in bladder cancer cells in vitro upon apoptosis inhibition[J]. Biochem Biophys Res Commun, 2022, 602: 8-14. |
13 | Xu Y, Lin ZW, Zhao N, et al. Receptor interactive protein kinase 3 promotes Cisplatin-triggered necrosis in apoptosis-resistant esophageal squamous cell carcinoma cells[J]. PLoS One, 2014, 9(6): e100127. |
14 | Chen J, Shao B, Wang J, et al. Chlorpyrifos caused necroptosis via MAPK/NF‑κB/TNF‑α pathway in common carp (Cyprinus carpio L.) gills[J]. Comp Biochem Physiol C Toxicol Pharmacol, 2021, 249: 109126. |
15 | Chen DS, Tong JS, Yang LH, et al. PUMA amplifies necroptosis signaling by activating cytosolic DNA sensors[J]. Proc Natl Acad Sci U S A, 2018, 115(15): 3930-5. |
16 | 张一鸣. LncRNAWSF27/miRNA: 1696调控GPX3参与细胞程序性坏死介导的鸡缺硒性肠炎的研究[D]. 哈尔滨: 东北农业大学, 2023. |
17 | Ofengeim D, Yuan JY. Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death[J]. Nat Rev Mol Cell Biol, 2013, 14(11): 727-36. |
18 | Cai HT, Lv MM, Wang TT. PANoptosis in cancer, the triangle of cell death[J]. Cancer Med, 2023, 12(24): 22206-23. |
19 | Krishnan RP, Pandiar D, Ramani P, et al. Necroptosis in human cancers with special emphasis on oral squamous cell carcinoma[J]. J Stomatol Oral Maxillofac Surg, 2023, 124(6S): 101565. |
20 | Wu XQ, Nagy LE, Gautheron J. Mediators of necroptosis: from cell death to metabolic regulation[J]. EMBO Mol Med, 2024, 16(2): 219-37. |
21 | Duan YW, Li QY, Zhou YH, et al. Activation of the TNF‑α-necroptosis pathway in parvalbumin-expressing interneurons of the anterior cingulate cortex contributes to neuropathic pain[J]. Int J Mol Sci, 2023, 24(20): 15454. |
22 | Lee CS, Hwang G, Nam YW, et al. IKK-mediated TRAF6 and RIPK1 interaction stifles cell death complex assembly leading to the suppression of TNF‑α‑induced cell death[J]. Cell Death Differ, 2023, 30(6): 1575-84. |
23 | Luo R, Onyshchenko K, Wang LQ, et al. Necroptosis-dependent immunogenicity of cisplatin: implications for enhancing the radiation-induced abscopal effect[J]. Clin Cancer Res, 2023, 29(3): 667-83. |
24 | Wang S, Liu XY, Liu Y. Hydrogen sulfide protects from acute kidney injury via attenuating inflammation activated by necroptosis in dogs[J]. J Vet Sci, 2022, 23(5): e72. |
25 | Sulkshane P, Teni T. BH3 mimetic Obatoclax (GX15-070) mediates mitochondrial stress predominantly via MCL-1 inhibition and induces autophagy-dependent necroptosis in human oral cancer cells[J]. Oncotarget, 2017, 8(36): 60060-79. |
26 | Basit F, Cristofanon S, Fulda S. Obatoclax (GX15-070) triggers necroptosis by promoting the assembly of the necrosome on autophagosomal membranes[J]. Cell Death Differ, 2013, 20(9): 1161-73. |
27 | Yuan TM, Liang RY, Chueh PJ, et al. Role of ribophorin II in the response to anticancer drugs in gastric cancer cell lines[J]. Oncol Lett, 2015, 9(4): 1861-8. |
28 | Huang YC, Yuan TM, Liu BH, et al. Capsaicin potentiates anticancer drug efficacy through autophagy-mediated ribophorin II downregulation and necroptosis in oral squamous cell carcinoma cells[J]. Front Pharmacol, 2021, 12: 676813. |
29 | Uzunparmak B, Gao M, Lindemann A, et al. Caspase-8 loss radiosensitizes head and neck squamous cell carcinoma to SMAC mimetic-induced necroptosis[J]. JCI Insight, 2020, 5(23): e139837. |
30 | Huang K, Gu XT, Xu HM, et al. Prognostic value of necroptosis-related genes signature in oral squamous cell carcinoma[J]. Cancers, 2023, 15(18): 4539. |
31 | Seo J, Nam YW, Kim S, et al. Necroptosis molecular mechanisms: recent findings regarding novel necroptosis regulators[J]. Exp Mol Med, 2021, 53(6): 1007-17. |
32 | Yun HM, Park JE, Lee JY, et al. Latifolin, a natural flavonoid, isolated from the heartwood of Dalbergia odorifera induces bioactivities through apoptosis, autophagy, and necroptosis in human oral squamous cell carcinoma[J]. Int J Mol Sci, 2022, 23(21): 13629. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||