Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (8): 1605-1611.doi: 10.12122/j.issn.1673-4254.2024.08.20
Qing LONG(), Jun YANG, Anling LIU(
)
Received:
2023-11-30
Online:
2024-08-20
Published:
2024-09-06
Contact:
Anling LIU
E-mail:lqing2024@163.com;aliu@smu.edu.cn
Qing LONG, Jun YANG, Anling LIU. Platelet-specific Rictor knockout inhibits platelet production and activation and reduces thrombosis in mice[J]. Journal of Southern Medical University, 2024, 44(8): 1605-1611.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.08.20
Fig.1 Generation of platelet-specific Rictor knockout (KO) mouse models. A: Genotyping results. B: Immunoblotting for Rictor, Akt, and p-Akt (S473) in the platelets. C, D: Gray scale of Rictor (C) and p-Akt (D) measured by Image J. E: Platelet counts of control and KO mice. *P<0.05,***P<0.001.
Fig.2 Rictor deletion reduces susceptibility to thrombosis in mice. A: Average tail bleeding time of Con and KO mice (n=10). B-D: Images (B), lengths (C), and weights (D) of thrombus from Con and KO mice. *P<0.05.
Fig3 PF4-Rictor mice exhibit severe deficiency in platelet function. A, B: Platelet aggregation induced by ADP (A) and thrombin (B) in PRP. C-D: FACS analysis of αIIbβ3 (C) and CD62P (D) in resting platelets. E, F: FACS analysis of αIIbβ3 (E) and CD62P (F) in platelets pretreated with thrombin. G: Platelet spreading on fibrinogen. H: ELISA analysis of plasma PF4 levels. *P<0.05, **P<0.01.
Fig.4 Rictor deletion inhibits megakaryocyte maturation. A: vWF staining of femoral bone sections from Con and Rictor-KO mice (Scale bar=200 μm). B: Ploidy formation of 3-month-old Con and KO mice. C: Ultrastructure and proplatelet formation of megakaryocytes from Con and KO mice (Scale bar=2 μm). *P<0.05, **P<0.01.
1 | Næss IA, Christiansen SC, Romundstad P, et al. Incidence and mortality of venous thrombosis: a population-based study[J]. J Thromb Haemost, 2007, 5(4): 692-9. |
2 | Camerer E, Kolstø AB, Prydz H. Cell biology of tissue factor, the principal initiator of blood coagulation[J]. Thromb Res, 1996, 81(1): 1-41. |
3 | Rojnuckarin P, Kaushansky K. Actin reorganization and proplatelet formation in murine megakaryocytes: the role of protein kinase calpha[J]. Blood, 2001, 97(1): 154-61. |
4 | Cramer EM, Norol F, Guichard J, et al. Ultrastructure of platelet formation by human megakaryocytes cultured with the Mpl ligand[J]. Blood, 1997, 89(7): 2336-46. |
5 | Flaumenhaft R. A new story ARC for α‑granule formation[J]. Blood, 2015, 126(2): 123-4. |
6 | Jr IJE. Unraveling mechanisms that control platelet production[J]. Semin Thromb Hemost, 2013, 39(1): 15-24. |
7 | Junt T, Schulze H, Chen Z, et al. Dynamic visualization of thrombopoiesis within bone marrow[J]. Science, 2007, 317(5845): 1767-70. |
8 | Cleator JH, Zhu WQ, Vaughan DE, et al. Differential regulation of endothelial exocytosis of P-selectin and von Willebrand factor by protease-activated receptors and cAMP[J]. Blood, 2006, 107(7): 2736-44. |
9 | Choi ES, Nichol JL, Hokom MM, et al. Platelets generated in vitro from proplatelet-displaying human megakaryocytes are functional[J]. Blood, 1995, 85(2): 402-13. |
10 | Brown EJ, Beal PA, Keith CT, et al. Control of p70 s6 kinase by kinase activity of FRAP in vivo [J]. Nature, 1995, 377(6548): 441-6. |
11 | Burnett PE, Barrow RK, Cohen NA, et al. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1[J]. Proc Natl Acad Sci USA, 1998, 95(4): 1432-7. |
12 | Sarbassov DD, Ali SM, Kim DH, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton[J]. Curr Biol, 2004, 14(14): 1296-302. |
13 | Dada S, Demartines N, Dormond O. mTORC2 regulates PGE2-mediated endothelial cell survival and migration[J]. Biochem Biophys Res Commun, 2008, 372(4): 875-9. |
14 | Albert V, Hall MN. mTOR signaling in cellular and organismal energetics[J]. Curr Opin Cell Biol, 2015, 33: 55-66. |
15 | Wang SC, Wang JL, Wang SW, et al. mTOR signaling pathway in bone diseases associated with hyperglycemia[J]. Int J Mol Sci, 2023, 24(11): 9198. |
16 | Sarbassov DD, Guertin DA, Ali SM, et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex[J]. Science, 2005, 307(5712): 1098-101. |
17 | Jacinto E, Loewith R, Schmidt A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive[J]. Nat Cell Biol, 2004, 6(11): 1122-8. |
18 | 尹承龙, 劳学军. PI3K-AKT-mTOR信号通路的研究进展[J]. 中国医学创新, 2016, 13(1): 145-8. |
19 | 宋晓红, 刘明明. mTOR信号通路与相关疾病的研究进展[J]. 微循环学杂志, 2018, 28(3): 64-70. |
20 | Fuhler GM, Tyl MR, Olthof SG, et al. Distinct roles of the mTOR components Rictor and Raptor in MO7e megakaryocytic cells[J]. Eur J Haematol, 2009, 83(3): 235-45. |
21 | Pleines I, Dütting S, Cherpokova D, et al. Defective tubulin organization and proplatelet formation in murine megakaryocytes lacking Rac1 and Cdc42[J]. Blood, 2013, 122(18): 3178-87. |
22 | Zhang XY, Evans TD, Chen S, et al. Loss of macrophage mTORC2 drives atherosclerosis via FoxO1 and IL-1β signaling[J]. Circ Res, 2023, 133(3): 200-19. |
23 | 张 浩, 包新杰, 代从新, 等. PI3K/Akt/mTOR信号通路在无功能垂体腺瘤中的研究进展[J]. 中华医学杂志, 2015, 95(47): 3874-6. |
24 | Chen X, Zhang Y, Wang YH, et al. PDK1 regulates platelet activation and arterial thrombosis[J]. Blood, 2013, 121(18): 3718-26. |
25 | Etienne-Manneville S, Hall A. Rho GTPases in cell biology[J]. Nature, 2002, 420(6916): 629-35. |
26 | Hervieu A, Heuss SF, Zhang C, et al. A PI3K- and GTPase-independent Rac1-mTOR mechanism mediates MET-driven anchorage-independent cell growth but not migration[J]. Sci Signal, 2020, 13(637): eaba8627. |
27 | Vidal C, Geny B, Melle J, et al. Cdc42/Rac1-dependent activation of the p21-activated kinase (PAK) regulates human platelet lamellipodia spreading: implication of the cortical-actin binding protein cortactin[J]. Blood, 2002, 100(13): 4462-9. |
28 | Aslan JE, McCarty OJT. Rho GTPases in platelet function[J]. J Thromb Haemost, 2013, 11(1): 35-46. |
29 | Joo SJ. Mechanisms of platelet activation and integrin αIIβ3[J]. Korean Circ J, 2012, 42(5): 295-301. |
30 | Tang ZH, Shi H, Chen CM, et al. Activation of platelet mTORC2/akt pathway by anti‑β2GP1 antibody promotes thrombosis in antiphospholipid syndrome[J]. Arterioscler Thromb Vasc Biol, 2023, 43(10): 1818-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||