Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (8): 1459-1466.doi: 10.12122/j.issn.1673-4254.2024.08.04
Mengyun ZHU1(), Jianfeng WANG2(
)
Received:
2024-04-12
Online:
2024-08-20
Published:
2024-09-06
Contact:
Jianfeng WANG
E-mail:1345392841@qq.com;7852978@qq.com
Mengyun ZHU, Jianfeng WANG. Conbercept reverses TGF‑β2-induced epithelial-mesenchymal transition in human lens epithelial cells by regulating the TGF-β/Smad signaling pathway[J]. Journal of Southern Medical University, 2024, 44(8): 1459-1466.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.08.04
Gene | Forward primer | Reverse primer |
---|---|---|
E-cadherin | GAAGTGTCCGAGGACTTTGG | CAGTGTCTCTCCAAATCCGATA |
Snail | CGGAAGCCTAACTACAGCGA | GGACAGAGTCCCAGATGAGC |
GAPDH | CAGCCTCAAGATCATCAGCA | TGTGGTCATGAGTCCTTCCA |
α-SMA | ATAGACATGCCGCCCTTCTT | GGCATCAAGGTACCCACAGA |
FN1 | AAGACCAGCAGAGGCATAAGG | TGTAGGGGTCAAAGCACGAG |
Collagen Ⅰ | TTGAGTTGTATCGTGTGGTG | AGAAGATGAAAATGAGACTG |
Collagen Ⅳ | TAGAGAGGAGCGAGATGTTC | GTGACATTAGCTGAGTCAGG |
Tab.1 The sequences of primer
Gene | Forward primer | Reverse primer |
---|---|---|
E-cadherin | GAAGTGTCCGAGGACTTTGG | CAGTGTCTCTCCAAATCCGATA |
Snail | CGGAAGCCTAACTACAGCGA | GGACAGAGTCCCAGATGAGC |
GAPDH | CAGCCTCAAGATCATCAGCA | TGTGGTCATGAGTCCTTCCA |
α-SMA | ATAGACATGCCGCCCTTCTT | GGCATCAAGGTACCCACAGA |
FN1 | AAGACCAGCAGAGGCATAAGG | TGTAGGGGTCAAAGCACGAG |
Collagen Ⅰ | TTGAGTTGTATCGTGTGGTG | AGAAGATGAAAATGAGACTG |
Collagen Ⅳ | TAGAGAGGAGCGAGATGTTC | GTGACATTAGCTGAGTCAGG |
Fig.1 Effects of conbercept on survival rate of lens epithelial cell line HLEC-SRA01/04. *P<0.05 vs 0 mg/mL at the same time point; #P<0.05 vs same concentration for 24 h; &P<0.05 vs the same concentration for 48 h.
Fig.5 TGF-β2 at 10 ng/mL for 24 h induces EMT of human lens epithelial cells SRA01/04 cells. A: Expression level of E-cadherin after TGF-β2 treatment detected by qRT-PCR. B: Expression level of α-SMA after TGF-β2 treatment detected by qRT-PCR. C: Expression level of Snail after TGF-β2 treatment detected by qRT-PCR. *P<0.05, **P<0.01 vs control.
Fig.6 Western blotting for detecting TGF-β2-induced EMT in HLEC-SRA01/04 cells treated with TGF-β2 for 24 h by detecting epithelial cell markers E-cadherin and mesenchymal cell markers α‑SMA and Snail. *P<0.05, **P<0.01 vs control.
Fig.7 Western blotting for detecting expressiona of E-cadherin, α-SMA and Snail in TGF-β2-induced HLEC-SRA01/04 cells after conbercept treatment. At least 3 replicates were performed in each experiment. **P<0.01, ***P<0.001 vs control; #P<0.05, ##P<0.01, ###P<0.001 vs TGF-β2.
Fig.9 Effect of conbercept on TGF-β2-induced expression of ECM genes in HLEC-SRA01/04 cells. A: Collagen I mRNA levels in cells treated with TGF-β2 and conbercept for 24 h detected by real-time PCR. B: FN1 mRNA levels in cells treated with TGF-β2 and conbercept for 24 h The mRNA levels. C: Collagen IV mRNA levels in cells treated with TGF-β2 and conbercept for 24 h. At least 3 replicates were performed in each experiment. **P<0.01, ***P<0.001 vs control; #P<0.05, ##P<0.01 vs TGF-β2.
Fig.10 Effects of conbercept on migration of SRA01/04 cells induced by TGF-β2. At least 3 replicates were performed in each experiment. Giemsa staining, Scale bar: 50 μm. ***P<0.001 vs control; ##P<0.01 vs TGF-β2.
Fig.11 Conbercept inhibits TGF-β/Smad signaling pathway in SRA01/04 cells induced by TGF-β2. The expressions of Smad2/3 and p-Smad2/3 were detected by Western blotting. At least 3 replicates were performed in each experiment. **P<0.01 vs control; ##P<0.01 vs TGF-β2.
1 | Wormstone IM, Wormstone YM, Smith AJO, et al. Posterior capsule opacification: what's in the bag[J]? Prog Retin Eye Res, 2021, 82: 100905. |
2 | Fichtner JE, Patnaik J, Christopher KL, et al. Cataract inhibitors: present needs and future challenges[J]. Chem Biol Interact, 2021, 349: 109679. |
3 | Fișuș AD, Findl O. Capsular fibrosis: a review of prevention methods and management[J]. Eye, 2020, 34: 256-62. |
4 | Lovicu FJ, Shin EH, McAvoy JW. Fibrosis in the lens. Sprouty regulation of TGFβ-signaling prevents lens EMT leading to cataract[J]. Exp Eye Res, 2016, 142: 92-101. |
5 | Trivedi RH, Wilson ME. Posterior capsule opacification in pediatric eyes with and without traumatic cataract[J]. J Cataract Refract Surg, 2015, 41(7): 1461-4. |
6 | Zhuravlyov A. Posterior YAG capsulotomy: selection of the application pattern[J]. Ophthalmologe, 2022, 119(5): 481-90. |
7 | Alon R, Assia EI, Kleinmann G. Prevention of posterior capsule opacification by an intracapsular open capsule device[J]. Invest Ophthalmol Vis Sci, 2014, 55(7): 4005-13. |
8 | Eldred JA, McDonald M, Wilkes HS, et al. Growth factor restriction impedes progression of wound healing following cataract surgery: identification of VEGF as a putative therapeutic target[J]. Sci Rep, 2016, 6: 24453. |
9 | Zhao L, Wang JM, Zhang Y, et al. Vitamin C decreases VEGF expression levels via hypoxia-inducible factor-1α dependent and independent pathways in lens epithelial cells[J]. Mol Med Rep, 2020, 22(1): 436-44. |
10 | Bai J, Song ZH, Li GY, et al. Efficacy and safety of anti-vascular endothelial growth factor drugs for Coats' disease treatment: a systematic review[J]. J Ocul Pharmacol Ther, 2023, 39(7): 418-29. |
11 | Hang A, Feldman S, Amin AP, et al. Intravitreal anti-vascular endothelial growth factor therapies for retinal disorders[J]. Pharmaceuticals, 2023, 16(8): 1140. |
12 | Li YF, Ren Q, Sun CH, et al. Efficacy and mechanism of anti-vascular endothelial growth factor drugs for diabetic macular edema patients[J]. World J Diabetes, 2022, 13(7): 532-42. |
13 | Lindholm JM, Laine I, Tuuminen R. Five-year cumulative incidence and risk factors of Nd: YAG capsulotomy in 10 044 hydrophobic acrylic 1-piece and 3-piece intraocular lenses[J]. Am J Ophthalmol, 2019, 200: 218-23. |
14 | Zhang RP, Xie ZG. Research progress of drug prophylaxis for lens capsule opacification after cataract surgery[J]. J Ophthalmol, 2020, 2020: 2181685. |
15 | Pożarowska D, Pożarowski P. The era of anti-vascular endothelial growth factor (VEGF) drugs in ophthalmology, VEGF and anti-VEGF therapy[J]. Cent Eur J Immunol, 2016, 41(3): 311-6. |
16 | Yoon DY, Woo SJ. Intravitreal administration of ranibizumab and bevacizumab for choroidal neovascularization secondary to ocular toxocariasis: a case report[J]. Ocul Immunol Inflamm, 2018, 26(4): 639-41. |
17 | Kikushima W, Sakurada Y, Sugiyama A, et al. Retreatment of polypoidal choroidal vasculopathy after photodynamic therapy combined with intravitreal ranibizumab[J]. Jpn J Ophthalmol, 2017, 61(1): 61-6. |
18 | Yum S, Jeong S, Kim D, et al. Minoxidil induction of VEGF is mediated by inhibition of HIF-prolyl hydroxylase[J]. Int J Mol Sci, 2017, 19(1): 53. |
19 | Zhang Y, Xu Y, Ma J, et al. Adrenomedullin promotes angiogenesis in epithelial ovarian cancer through upregulating hypoxia-inducible factor-1α and vascular endothelial growth factor[J]. Sci Rep, 2017, 7: 40524. |
20 | Eldred JA, Spalton DJ, Wormstone IM. An in vitro evaluation of the Anew Zephyr open-bag IOL in the prevention of posterior capsule opacification using a human capsular bag model[J]. Invest Ophthalmol Vis Sci, 2014, 55(11): 7057-64. |
21 | 赵洁文, 李明新. 康柏西普联合PDGF受体抑制剂对缺氧条件下视网膜色素上皮细胞增殖、迁移及VEGF表达的影响[J]. 眼科新进展, 2017, 37(12): 1127-31. |
22 | Desagher S, Martinou JC. Mitochondria as the central control point of apoptosis[J]. Trends Cell Biol, 2000, 10(9): 369-77. |
23 | 崔双慧, 朱梦云, 郝泽宇, 等. 康柏西普对晶状体上皮细胞增殖的抑制作用及其相关机制[J]. 临床眼科杂志, 2021, 29(5): 457-60. |
24 | Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition[J]. Cell Res, 2009, 19(2): 156-72. |
25 | Bassey-Archibong BI, Kwiecien JM, Milosavljevic SB, et al. Kaiso depletion attenuates transforming growth factor‑β signaling and metastatic activity of triple-negative breast cancer cells[J]. Oncogenesis, 2016, 5(3): e208. |
26 | 于 童, 王 静, 张劲松. 上皮间充质转化在后囊膜下混浊中的研究进展[J]. 国际眼科杂志, 2019, 19(8): 1309-12. |
27 | Evans RA, Tian YC, Steadman R, et al. TGF-beta1-mediated fibroblast-myofibroblast terminal differentiation-the role of Smad proteins[J]. Exp Cell Res, 2003, 282(2): 90-100. |
28 | Lin JH, Lee WJ, Wu HC, et al. Small G protein signalling modulator 2 (SGSM2) is involved in oestrogen receptor-positive breast cancer metastasis through enhancement of migratory cell adhesion via interaction with E-cadherin[J]. Cell Adh Migr, 2019, 13(1): 120-37. |
29 | 李 慧, 王 方. 上皮细胞-间质细胞转换过程中Snail基因家族的作用[J]. 国际眼科纵览, 2010, 34(1): 69-72. |
30 | Wanami LS, Chen HY, Peiró S, et al. Vascular endothelial growth factor-a stimulates Snail expression in breast tumor cells: implications for tumor progression[J]. Exp Cell Res, 2008, 314(13): 2448-53. |
31 | Saika S, Okada Y, Miyamoto T, et al. Smad translocation and growth suppression in lens epithelial cells by endogenous TGFbeta2 during wound repair[J]. Exp Eye Res, 2001, 72(6): 679-86. |
32 | Masuyama N, Hanafusa H, Kusakabe M, et al. Identification of two Smad4 proteins in Xenopus. Their common and distinct properties[J]. J Biol Chem, 1999, 274(17): 12163-70. |
33 | Xiao YC, Ye JT, Zhou Y, et al. Baicalin inhibits pressure overload-induced cardiac fibrosis through regulating AMPK/TGF-β/Smads signaling pathway[J]. Arch Biochem Biophys, 2018, 640: 37-46. |
34 | Park B, Hwang E, Seo SA, et al. Eucalyptus globulus extract protects against UVB-induced photoaging by enhancing collagen synthesis via regulation of TGF-β/Smad signals and attenuation of AP-1[J]. Arch Biochem Biophys, 2018, 637: 31-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||