Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (7): 1227-1235.doi: 10.12122/j.issn.1673-4254.2024.07.02
Previous Articles Next Articles
Zhiyong KE1(), Zicheng HUANG1(
), Ruolin HE1, Qian ZHANG1, Sixu CHEN1, Zhong-Kai CUI1(
), Jing DING2(
)
Received:
2024-05-31
Online:
2024-07-20
Published:
2024-07-25
Contact:
Zhong-Kai CUI, Jing DING
E-mail:kezhy@smu.edu.cn;huangzicheng2@qq.com;zhongkaicui@smu.edu.cn;doctor2049@sina.com
Supported by:
Zhiyong KE, Zicheng HUANG, Ruolin HE, Qian ZHANG, Sixu CHEN, Zhong-Kai CUI, Jing DING. Hmga2 knockdown enhances osteogenic differentiation of adipose-derived mesenchymal stem cells and accelerates bone defect healing in mice[J]. Journal of Southern Medical University, 2024, 44(7): 1227-1235.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.07.02
Gene | Sequence | |
---|---|---|
Hmga2 | Forward | CCGGTAGAGGCAGTGGTAGC |
Reverse | GGTTGTTCCCTGGGCTGATGT | |
Alp | Forward | GAGCAGGAACAGAAGTTTGC |
Reverse | GTTGCAGGGTCTGGAGAGTA | |
Osx | Forward | GCCGCTTTGTGCCTTTGAAATG |
Reverse | CGTTATGCTCTTCCCAGACTCC | |
Runx2 | Forward | CCGCACGACAACCGCACCAT |
Reverse | CGCTCCGGCCCACAAATCTC | |
Opn | Forward | CCCTCGATGTCATCCCTGTT |
Reverse | CCCTTTCCGTTGTTGTCCTG | |
Ocn | Forward | AGCTCAACCCCAATTGTGAC |
Reverse | AGCTGTGCCGTCCATACTTT | |
Dlk1 | Forward | GCGGGAACGCAACAACATC |
Reverse | GTCACTGGTCAACTCCAGCAC | |
Pparγ | Forward | GTGATGGAAGACCACTCGCATT |
Reverse | CCATGAGGGAGTTAGAAGGTTC |
Tab.1 Primer sequences for RT-qPCR
Gene | Sequence | |
---|---|---|
Hmga2 | Forward | CCGGTAGAGGCAGTGGTAGC |
Reverse | GGTTGTTCCCTGGGCTGATGT | |
Alp | Forward | GAGCAGGAACAGAAGTTTGC |
Reverse | GTTGCAGGGTCTGGAGAGTA | |
Osx | Forward | GCCGCTTTGTGCCTTTGAAATG |
Reverse | CGTTATGCTCTTCCCAGACTCC | |
Runx2 | Forward | CCGCACGACAACCGCACCAT |
Reverse | CGCTCCGGCCCACAAATCTC | |
Opn | Forward | CCCTCGATGTCATCCCTGTT |
Reverse | CCCTTTCCGTTGTTGTCCTG | |
Ocn | Forward | AGCTCAACCCCAATTGTGAC |
Reverse | AGCTGTGCCGTCCATACTTT | |
Dlk1 | Forward | GCGGGAACGCAACAACATC |
Reverse | GTCACTGGTCAACTCCAGCAC | |
Pparγ | Forward | GTGATGGAAGACCACTCGCATT |
Reverse | CCATGAGGGAGTTAGAAGGTTC |
Fig.1 Differential gene expression profile during adipogenic differentiation of human ADSCs. A: Schematic illustration of the balance between adipogenic and osteogenic differentiation. B: Venn plot of up-regulated genes in the GSE175624 and GSE125331 datasets. C: Bubble chart of GO pathway enrichment analysis of the differentially expressed genes. D: Heatmap of the differentially expressed genes under the "fat cell differentiation" term. E: Expression of HMGA2 in GSE175614 dataset.
Fig.2 Hmga2 knockdown promotes osteogenic differentiation of mouse ADSCs in vitro. A: si-Hmga2 inhibits Hmga2 mRNA expression in ADSCs. B-E: ALP staining and activity assay of mouse ADSCs on day 3 (B, C) and 7 (D, E) of osteogenic induction. F, G: ARS staining and quantification of calcium deposition in ADSCs on day 14 of osteogenic induction. *P<0.05, ***P<0.001 vs si-NC group. Scale bar: 500 μm.
Fig.3 Effects of Hmga2 knockdown on expressions of osteogenic and adipogenic markers of ADSCs. A-C: Relative expression levels of Osx, Pparγ, and Dlk1 mRNAs in ADSCs on day 3 of osteogenic induction. D-F:Expressions of Runx2 and Opn mRNA and proteins on day 7. G: Expressions of OCN protein on day 7. *P<0.05, **P<0.01, ***P<0.001, ****P <0.0001 vs si-NC group.
Fig.5 Three-dimensional micro-CT reconstruction and histomorphometric analysis bone defect repair in mice at 6 weeks after surgery. A: Reconstructed micro-CT images. B: Morphometric analyses of bone regeneration in calvarial defects by assessing relative bone growth surface area, bone volume/tissue volume (BV/TV%), trabecular number (Tb.N) and trabecular thickness (Tb.Th). **P<0.01, ***P<0.001, ****P<0.0001 vs Blank group.
Fig.6 HE and Masson's trichrome staining of bone regeneration in the calvarial defects at 6 weeks after surgery. A, C: HE staining overview image (scale bar: 500 μm) and magnified image (scale bar: 100 μm). B, D: Masson's trichrome staining overview image (scale bar: 500 μm) and magnified image (scale bar: 100 μm).
Fig.7 Protein-protein interaction (PPI) network analysis of HMGA2. A: PPI networks after cluster analyses. B: Predicted HMGA2 direct interacting proteins.
Gene | Combined score | Experimentally determined interaction | Coexpression |
---|---|---|---|
IGF2BP3 0.909 0.292 0.257 | |||
SMAD9 | 0.816 | 0.294 | 0.067 |
SNAI1 | 0.728 | 0 | 0.042 |
SMAD7 | 0.68 | 0.045 | 0.055 |
CDH1 | 0.593 | 0.059 | 0 |
ALDH1A1 | 0.569 | 0 | 0 |
CDH2 | 0.538 | 0.095 | 0.097 |
Tab.2 HMGA2-interacting protein possibility score
Gene | Combined score | Experimentally determined interaction | Coexpression |
---|---|---|---|
IGF2BP3 0.909 0.292 0.257 | |||
SMAD9 | 0.816 | 0.294 | 0.067 |
SNAI1 | 0.728 | 0 | 0.042 |
SMAD7 | 0.68 | 0.045 | 0.055 |
CDH1 | 0.593 | 0.059 | 0 |
ALDH1A1 | 0.569 | 0 | 0 |
CDH2 | 0.538 | 0.095 | 0.097 |
1 | Karalashvili L, Kakabadze A, Uhryn M, et al. Bone grafts for reconstruction of bone defects (review)[J]. Georgian Med News, 2018(282): 44-9. |
2 | Marx RE. Bone and bone graft healing[J]. Oral Maxillofac Surg Clin North Am, 2007, 19(4): 455-66, v. |
3 | Bläsius F, Delbrück H, Hildebrand F, et al. Surgical treatment of bone sarcoma[J]. Cancers, 2022, 14(11): 2694. |
4 | Myeroff C, Archdeacon M. Autogenous bone graft: donor sites and techniques[J]. J Bone Joint Surg Am, 2011, 93(23): 2227-36. |
5 | Tabrizi R, Shafiei S, Moslemi H, et al. Impact of osteoporosis on autogenous bone graft resorption[J]. J Oral Maxillofac Surg, 2024,[Online ahead of print]. |
6 | Shimada Y, Ishikawa T, Endo J, et al. Treatment of atypical ulnar fractures associated with long-term bisphosphonate therapy for osteoporosis: autogenous bone graft with internal fixation[J]. Case Rep Orthop, 2017, 2017: 8602573. |
7 | Chou LB, Mann RA, Coughlin MJ, et al. Stress fracture as a complication of autogenous bone graft harvest from the distal tibia[J]. Foot Ankle Int, 2007, 28(2): 199-201. |
8 | Bharadwaz A, Jayasuriya AC. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2020, 110: 110698. |
9 | Moghaddam A, Bahrami M, Mirzadeh M, et al. Recent trends in bone tissue engineering: a review of materials, methods, and structures[J]. Biomed Mater, 2024, 19(4): 1088. |
10 | 茹江英, 牛云飞, 刘雅克, 等. 骨不连、骨缺损治疗新材料、新技术的 基础研究及临床应用[Z]. 2016. |
11 | El-Rashidy AA, Roether JA, Harhaus L, et al. Regenerating bone with bioactive glass scaffolds: a review of in vivo studies in bone defect models[J]. Acta Biomater, 2017, 62: 1-28. |
12 | 吴展羽, 叶 川. 干细胞在骨科多种疾病治疗中的应用: 问题及前景[J]. 中国组织工程研究, 2018, 22(17): 2775-82. DOI: 10.3969/j.issn.2095-4344.0513 |
13 | Gou YN, Huang YR, Luo WP, et al. Adipose-derived mesenchymal stem cells (MSCs) are a superior cell source for bone tissue engineering[J]. Bioact Mater, 2024, 34: 51-63. |
14 | Gaur S, Agnihotri R. Application of adipose tissue stem cells in regenerative dentistry: a systematic review[J]. J Int Soc Prev Community Dent, 2021, 11(3): 266-71. |
15 | Dziedzic DSM, Mogharbel BF, Ferreira PE, et al. Transplantation of adipose-derived cells for periodontal regeneration: a systematic review[J]. Curr Stem Cell Res Ther, 2019, 14(6): 504-18. |
16 | James AW. Review of signaling pathways governing MSC osteogenic and adipogenic differentiation[J]. Scientifica, 2013, 2013: 684736. |
17 | Hammond SM, Sharpless NE. HMGA2, microRNAs, and stem cell aging[J]. Cell, 2008, 135(6): 1013-6. |
18 | West RC, McWhorter ES, Ali A, et al. HMGA2 is regulated by LIN28 and BRCA1 in human placental cells[J]. Biol Reprod, 2019, 100(1): 227-38. |
19 | Yan JJ, Yang YL, Liu YR, et al. MicroRNA let-7g links foam cell formation and adipogenic differentiation: a key regulator of Paeonol treating atherosclerosis-osteoporosis[J]. Phytomedicine, 2024, 126: 155447. |
20 | Ligon AH, Moore SD, Parisi MA, et al. Constitutional rearrangement of the architectural factor HMGA2: a novel human phenotype including overgrowth and lipomas[J]. Am J Hum Genet, 2005, 76(2): 340-8. |
21 | Erickson-Johnson MR, Seys AR, Roth CW, et al. Carboxypeptidase M: a biomarker for the discrimination of well-differentiated liposarcoma from lipoma[J]. Mod Pathol, 2009, 22(12): 1541-7. |
22 | Kalomoiris S, Cicchetto AC, Lakatos K, et al. Fibroblast growth factor 2 regulates high mobility group A2 expression in human bone marrow-derived mesenchymal stem cells[J]. J Cell Biochem, 2016, 117(9): 2128-37. |
23 | Zhang L, Xie HQ, Li SL. LncRNA LOXL1-AS1 controls osteogenic and adipocytic differentiation of bone marrow mesenchymal stem cells in postmenopausal osteoporosis through regulating the miR-196a-5p/Hmga2 axis[J]. J Bone Miner Metab, 2020, 38(6): 794-805. |
24 | Zhang Y, Liu Y, Wu M, et al. MicroRNA-664a-5p promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by directly downregulating HMGA2[J]. Biochem Biophys Res Commun, 2020, 521(1): 9-14. |
25 | Wei JF, Li HL, Wang SH, et al. Let-7 enhances osteogenesis and bone formation while repressing adipogenesis of human stromal/mesenchymal stem cells by regulating HMGA2[J]. Stem Cells Dev, 2014, 23(13): 1452-63. |
26 | Gao XL, Cao MG, Ai GG, et al. MiR-98 reduces the expression of HMGA2 and promotes osteogenic differentiation of mesenchymal stem cells[J]. Eur Rev Med Pharmacol Sci, 2018, 22(11): 3311-7. |
27 | Zhao HQ, Yang YX, Wang Y, et al. MicroRNA-497-5p stimulates osteoblast differentiation through HMGA2-mediated JNK signaling pathway[J]. J Orthop Surg Res, 2020, 15(1): 515. |
28 | 曹振宇, 冶 怡, 马建武, 等. MiR-98-5p靶向HMGA2通过PI3K/Akt/GSK-3β通路调控骨再生的机制研究[J]. 解放军医药杂志, 2021, 33(8): 40-4, 61. DOI: 10.3969/j.issn.2095-140X.2021.08.008 |
29 | Tian Z, Zhou HZ, Xu YB, et al. MicroRNA-495 inhibits new bone regeneration via targeting high mobility group AT-hook 2 (HMGA2)[J]. Med Sci Monit, 2017, 23: 4689-98. |
30 | Negishi T, Mihara N, Chiba T, et al. High mobility group AT-hook 2 regulates osteoblast differentiation and facial bone development[J]. Biochem Biophys Res Commun, 2022, 590: 68-74. |
31 | Cui ZK, Kim S, Baljon JJ, et al. Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering[J]. Nat Commun, 2019, 10(1): 3523. |
32 | Dimitriou R, Jones E, McGonagle D, et al. Bone regeneration: current concepts and future directions[J]. BMC Med, 2011, 9: 66. |
33 | Nauth A, Schemitsch E, Norris B, et al. Critical-size bone defects: is there a consensus for diagnosis and treatment[J]? J Orthop Trauma, 2018, 32(): S7-S11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||