Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (6): 1182-1187.doi: 10.12122/j.issn.1673-4254.2024.06.20
Biqing ZOU(), Lishan XU, Keke LI, Shengli AN(
)
Received:
2023-12-11
Online:
2024-06-20
Published:
2024-07-01
Contact:
Shengli AN
E-mail:zoubq09288@126.com;1069766473@qq.com
Biqing ZOU, Lishan XU, Keke LI, Shengli AN. A simulation study of the reliability and accuracy of Cox-TEL method for estimating hazard ratio and difference in proportions for long-term survival data containing cured patients[J]. Journal of Southern Medical University, 2024, 44(6): 1182-1187.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.06.20
Project | Parameter settings |
---|---|
The type I error of the HRs of the Cox-TEL method | Cure rates (Censored rates): 0.10 (0.25, 0.30, 0.35, 0.40)、0.30 (0.45, 0.50, 0.55, 0.60)、0.50 (0.65, 0.70, 0.75, 0.80) Sample size:200、400、600、800、1000 Number of simulations:1000 |
The type I error of the DPs of the Cox-TEL method | Cure rates (Censored rates): 0.10 (0.25, 0.30, 0.35, 0.40)、0.30 (0.45, 0.50, 0.55, 0.60)、0.50 (0.65, 0.70, 0.75, 0.80) Sample size:200、250、300、350、400 Number of simulations:200 |
The power of the HRs of the Cox-TEL method | Censored rates (Difference in cure rates): 0.30 (0.10, 0.15, 0.20, 0.25, 0.30)、0.50 (0.10, 0.15, 0.20, 0.25, 0.30)、0.70 (0.10, 0.15, 0.20, 0.25, 0.30) Sample size:200、400、600、800、1000 Number of simulations:1000 |
The power of the DPs of the Cox-TEL method | Censored rates (Difference in cure rates): 0.50 (0.010, 0.012, 0.014, 0.016, 0.018, 0.020)、0.70 (0.010, 0.012, 0.014, 0.016, 0.018, 0.020) Sample size:200、250、300、350、400 Number of simulations:200 |
Tab.1 Setting of the simulation parameters
Project | Parameter settings |
---|---|
The type I error of the HRs of the Cox-TEL method | Cure rates (Censored rates): 0.10 (0.25, 0.30, 0.35, 0.40)、0.30 (0.45, 0.50, 0.55, 0.60)、0.50 (0.65, 0.70, 0.75, 0.80) Sample size:200、400、600、800、1000 Number of simulations:1000 |
The type I error of the DPs of the Cox-TEL method | Cure rates (Censored rates): 0.10 (0.25, 0.30, 0.35, 0.40)、0.30 (0.45, 0.50, 0.55, 0.60)、0.50 (0.65, 0.70, 0.75, 0.80) Sample size:200、250、300、350、400 Number of simulations:200 |
The power of the HRs of the Cox-TEL method | Censored rates (Difference in cure rates): 0.30 (0.10, 0.15, 0.20, 0.25, 0.30)、0.50 (0.10, 0.15, 0.20, 0.25, 0.30)、0.70 (0.10, 0.15, 0.20, 0.25, 0.30) Sample size:200、400、600、800、1000 Number of simulations:1000 |
The power of the DPs of the Cox-TEL method | Censored rates (Difference in cure rates): 0.50 (0.010, 0.012, 0.014, 0.016, 0.018, 0.020)、0.70 (0.010, 0.012, 0.014, 0.016, 0.018, 0.020) Sample size:200、250、300、350、400 Number of simulations:200 |
Cure rates | Censored rates | Sample size | ||||
---|---|---|---|---|---|---|
200 | 400 | 600 | 800 | 1000 | ||
0.10 | 0.25 | 0.050 | 0.068 | 0.067 | 0.063 | 0.063 |
0.30 | 0.065 | 0.069 | 0.065 | 0.072 | 0.061 | |
0.35 | 0.054 | 0.076 | 0.067 | 0.058 | 0.067 | |
0.40 | 0.059 | 0.065 | 0.076 | 0.058 | 0.061 | |
0.30 | 0.45 | 0.062 | 0.077 | 0.074 | 0.066 | 0.073 |
0.50 | 0.072 | 0.073 | 0.077 | 0.091 | 0.077 | |
0.55 | 0.070 | 0.058 | 0.078 | 0.074 | 0.069 | |
0.60 | 0.063 | 0.074 | 0.079 | 0.077 | 0.065 | |
0.50 | 0.65 | 0.047 | 0.061 | 0.078 | 0.070 | 0.064 |
0.70 | 0.061 | 0.073 | 0.070 | 0.062 | 0.084 | |
0.75 | 0.054 | 0.073 | 0.069 | 0.071 | 0.055 | |
0.80 | 0.073 | 0.070 | 0.081 | 0.051 | 0.065 |
Tab.2 Type I error of the HRs with different cure rates, censored rates, and sample size
Cure rates | Censored rates | Sample size | ||||
---|---|---|---|---|---|---|
200 | 400 | 600 | 800 | 1000 | ||
0.10 | 0.25 | 0.050 | 0.068 | 0.067 | 0.063 | 0.063 |
0.30 | 0.065 | 0.069 | 0.065 | 0.072 | 0.061 | |
0.35 | 0.054 | 0.076 | 0.067 | 0.058 | 0.067 | |
0.40 | 0.059 | 0.065 | 0.076 | 0.058 | 0.061 | |
0.30 | 0.45 | 0.062 | 0.077 | 0.074 | 0.066 | 0.073 |
0.50 | 0.072 | 0.073 | 0.077 | 0.091 | 0.077 | |
0.55 | 0.070 | 0.058 | 0.078 | 0.074 | 0.069 | |
0.60 | 0.063 | 0.074 | 0.079 | 0.077 | 0.065 | |
0.50 | 0.65 | 0.047 | 0.061 | 0.078 | 0.070 | 0.064 |
0.70 | 0.061 | 0.073 | 0.070 | 0.062 | 0.084 | |
0.75 | 0.054 | 0.073 | 0.069 | 0.071 | 0.055 | |
0.80 | 0.073 | 0.070 | 0.081 | 0.051 | 0.065 |
Censored rates | Difference in cure rates* | Sample size | ||||
---|---|---|---|---|---|---|
200 | 400 | 600 | 800 | 1000 | ||
0.30 | 0.10 | 0.157 | 0.294 | 0.417 | 0.495 | 0.592 |
0.15 | 0.267 | 0.550 | 0.710 | 0.819 | 0.885 | |
0.20 | 0.367 | 0.713 | 0.878 | 0.949 | 0.978 | |
0.25 | 0.588 | 0.899 | 0.982 | 0.996 | 0.998 | |
0.30 | 0.909 | 0.996 | 1.000 | 1.000 | 1.000 | |
0.50 | 0.10 | 0.147 | 0.275 | 0.342 | 0.442 | 0.511 |
0.15 | 0.259 | 0.490 | 0.638 | 0.763 | 0.839 | |
0.20 | 0.311 | 0.671 | 0.850 | 0.942 | 0.981 | |
0.25 | 0.530 | 0.831 | 0.945 | 0.985 | 0.996 | |
0.30 | 0.728 | 0.948 | 0.985 | 0.991 | 0.997 | |
0.70 | 0.10 | 0.163 | 0.248 | 0.345 | 0.428 | 0.487 |
0.15 | 0.254 | 0.486 | 0.644 | 0.752 | 0.833 | |
0.20 | 0.312 | 0.677 | 0.867 | 0.942 | 0.973 | |
0.25 | 0.308 | 0.712 | 0.913 | 0.981 | 0.989 | |
0.30 | 0.629 | 0.921 | 0.985 | 0.994 | 0.999 |
Tab.3 Power of the HRs with different censored rates, difference in cure rates and sample size
Censored rates | Difference in cure rates* | Sample size | ||||
---|---|---|---|---|---|---|
200 | 400 | 600 | 800 | 1000 | ||
0.30 | 0.10 | 0.157 | 0.294 | 0.417 | 0.495 | 0.592 |
0.15 | 0.267 | 0.550 | 0.710 | 0.819 | 0.885 | |
0.20 | 0.367 | 0.713 | 0.878 | 0.949 | 0.978 | |
0.25 | 0.588 | 0.899 | 0.982 | 0.996 | 0.998 | |
0.30 | 0.909 | 0.996 | 1.000 | 1.000 | 1.000 | |
0.50 | 0.10 | 0.147 | 0.275 | 0.342 | 0.442 | 0.511 |
0.15 | 0.259 | 0.490 | 0.638 | 0.763 | 0.839 | |
0.20 | 0.311 | 0.671 | 0.850 | 0.942 | 0.981 | |
0.25 | 0.530 | 0.831 | 0.945 | 0.985 | 0.996 | |
0.30 | 0.728 | 0.948 | 0.985 | 0.991 | 0.997 | |
0.70 | 0.10 | 0.163 | 0.248 | 0.345 | 0.428 | 0.487 |
0.15 | 0.254 | 0.486 | 0.644 | 0.752 | 0.833 | |
0.20 | 0.312 | 0.677 | 0.867 | 0.942 | 0.973 | |
0.25 | 0.308 | 0.712 | 0.913 | 0.981 | 0.989 | |
0.30 | 0.629 | 0.921 | 0.985 | 0.994 | 0.999 |
Cure rates | Censored rates | Sample size | ||||
---|---|---|---|---|---|---|
200 | 250 | 300 | 350 | 400 | ||
0.10 | 0.25 | 0.055 | 0.030 | 0.060 | 0.030 | 0.080 |
0.30 | 0.040 | 0.040 | 0.055 | 0.045 | 0.035 | |
0.35 | 0.040 | 0.050 | 0.040 | 0.050 | 0.030 | |
0.40 | 0.050 | 0.045 | 0.045 | 0.045 | 0.035 | |
0.30 | 0.45 | 0.080 | 0.040 | 0.055 | 0.075 | 0.060 |
0.50 | 0.080 | 0.040 | 0.055 | 0.055 | 0.070 | |
0.55 | 0.050 | 0.035 | 0.050 | 0.030 | 0.075 | |
0.60 | 0.075 | 0.035 | 0.045 | 0.055 | 0.055 | |
0.50 | 0.65 | 0.065 | 0.025 | 0.045 | 0.070 | 0.055 |
0.70 | 0.035 | 0.035 | 0.040 | 0.025 | 0.055 | |
0.75 | 0.045 | 0.050 | 0.065 | 0.080 | 0.040 | |
0.80 | 0.045 | 0.075 | 0.035 | 0.045 | 0.065 |
Tab.4 Type I error of the DPs with different cure rates, censored rates, and sample size
Cure rates | Censored rates | Sample size | ||||
---|---|---|---|---|---|---|
200 | 250 | 300 | 350 | 400 | ||
0.10 | 0.25 | 0.055 | 0.030 | 0.060 | 0.030 | 0.080 |
0.30 | 0.040 | 0.040 | 0.055 | 0.045 | 0.035 | |
0.35 | 0.040 | 0.050 | 0.040 | 0.050 | 0.030 | |
0.40 | 0.050 | 0.045 | 0.045 | 0.045 | 0.035 | |
0.30 | 0.45 | 0.080 | 0.040 | 0.055 | 0.075 | 0.060 |
0.50 | 0.080 | 0.040 | 0.055 | 0.055 | 0.070 | |
0.55 | 0.050 | 0.035 | 0.050 | 0.030 | 0.075 | |
0.60 | 0.075 | 0.035 | 0.045 | 0.055 | 0.055 | |
0.50 | 0.65 | 0.065 | 0.025 | 0.045 | 0.070 | 0.055 |
0.70 | 0.035 | 0.035 | 0.040 | 0.025 | 0.055 | |
0.75 | 0.045 | 0.050 | 0.065 | 0.080 | 0.040 | |
0.80 | 0.045 | 0.075 | 0.035 | 0.045 | 0.065 |
Censored rates | Difference in cure rates* | Sample size | ||||
---|---|---|---|---|---|---|
200 | 250 | 300 | 350 | 400 | ||
0.50 | 0.010 | 0.280 | 0.400 | 0.465 | 0.490 | 0.525 |
0.012 | 0.380 | 0.525 | 0.555 | 0.655 | 0.710 | |
0.014 | 0.525 | 0.625 | 0.725 | 0.760 | 0.820 | |
0.016 | 0.660 | 0.750 | 0.825 | 0.870 | 0.905 | |
0.018 | 0.730 | 0.870 | 0.855 | 0.925 | 0.955 | |
0.020 | 0.815 | 0.880 | 0.965 | 0.950 | 0.985 | |
0.70 | 0.010 | 0.320 | 0.375 | 0.410 | 0.530 | 0.615 |
0.012 | 0.370 | 0.450 | 0.615 | 0.605 | 0.670 | |
0.014 | 0.545 | 0.605 | 0.645 | 0.740 | 0.800 | |
0.016 | 0.620 | 0.710 | 0.815 | 0.825 | 0.920 | |
0.018 | 0.745 | 0.830 | 0.895 | 0.920 | 0.950 | |
0.020 | 0.820 | 0.860 | 0.950 | 0.975 | 0.980 |
Tab.5 Power of the DPs with different censored rates, difference in cure rates and sample size
Censored rates | Difference in cure rates* | Sample size | ||||
---|---|---|---|---|---|---|
200 | 250 | 300 | 350 | 400 | ||
0.50 | 0.010 | 0.280 | 0.400 | 0.465 | 0.490 | 0.525 |
0.012 | 0.380 | 0.525 | 0.555 | 0.655 | 0.710 | |
0.014 | 0.525 | 0.625 | 0.725 | 0.760 | 0.820 | |
0.016 | 0.660 | 0.750 | 0.825 | 0.870 | 0.905 | |
0.018 | 0.730 | 0.870 | 0.855 | 0.925 | 0.955 | |
0.020 | 0.815 | 0.880 | 0.965 | 0.950 | 0.985 | |
0.70 | 0.010 | 0.320 | 0.375 | 0.410 | 0.530 | 0.615 |
0.012 | 0.370 | 0.450 | 0.615 | 0.605 | 0.670 | |
0.014 | 0.545 | 0.605 | 0.645 | 0.740 | 0.800 | |
0.016 | 0.620 | 0.710 | 0.815 | 0.825 | 0.920 | |
0.018 | 0.745 | 0.830 | 0.895 | 0.920 | 0.950 | |
0.020 | 0.820 | 0.860 | 0.950 | 0.975 | 0.980 |
Method | HRs | 95% CI | DPs (95% CI) |
---|---|---|---|
Cox-TEL | 0.67 | (0.37-1.19) | 0.04 (-0.12, 0.20) |
Cox regression model | 0.54 | (0.30-0.96) | - |
Tab.6 Comparison of the results of the Cox-TEL method with the original method
Method | HRs | 95% CI | DPs (95% CI) |
---|---|---|---|
Cox-TEL | 0.67 | (0.37-1.19) | 0.04 (-0.12, 0.20) |
Cox regression model | 0.54 | (0.30-0.96) | - |
1 | Cox DR. Regression models and life-tables[J]. J R Stat Soc Ser B Stat Methodol, 1972, 34(2): 187-202. |
2 | Jayk Bernal A, Gomes da Silva MM, Musungaie DB, et al. Molnupiravir for oral treatment of covid-19 in nonhospitalized patients[J]. N Engl J Med, 2022, 386(6): 509-20. |
3 | Tawbi HA, Schadendorf D, Lipson EJ, et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma[J]. N Engl J Med, 2022, 386(1): 24-34. |
4 | 康 佩, 许 军, 黄福强, 等. Adaptive Elastic Net结合加速失效时间模型在亚组识别中的应用[J]. 南方医科大学学报, 2019, 39(10): 1200-6. DOI: 10.12122/j.issn.1673-4254.2019.10.11 |
5 | El Sharouni MA, Ahmed T, Varey AHR, et al. Development and validation of nomograms to predict local, regional, and distant recurrence in patients with thin (T1) melanomas[J]. J Clin Oncol, 2021, 39(11): 1243-52. |
6 | An SL, Zhang P, Fang HB. Subgroup identification in survival outcome data based on concordance probability measurement[J]. Mathematics, 2023, 11(13): 2855. |
7 | 黄福强, 康 佩, 刘颖欣, 等. 含治愈个体生存资料的亚组识别研究[J]. 中国卫生统计, 2020, 37(5): 672-7. |
8 | 韦红霞, 康 佩, 刘颖欣, 等. 基于Adaptive Elastic Net与加速失效时间模型的亚组识别方法的应用拓展[J]. 南方医科大学学报, 2021, 41(3): 391-8. DOI: 10.12122/j.issn.1673-4254.2021.03.11 |
9 | Peng Y, Dear KB. A nonparametric mixture model for cure rate estimation[J]. Biometrics, 2000, 56(1): 237-43. |
10 | Sy JP, Taylor JM. Estimation in a Cox proportional hazards cure model[J]. Biometrics, 2000, 56(1): 227-36. |
11 | Lo SN, Scolyer RA, Thompson JF. Long-term survival of patients with thin (T1) cutaneous melanomas: a Breslow thickness cut point of 0.8mm separates higher-risk and lower-risk tumors[J]. Ann Surg Oncol, 2018, 25(4): 894-902. |
12 | Lu WB. Maximum likelihood estimation in the proportional hazards cure model[J]. Ann Inst Stat Math, 2008, 60(3): 545-74. |
13 | Royston P, Parmar MK. Restricted mean survival time: an alternative to the hazard ratio for the design and analysis of randomized trials with a time-to-event outcome[J]. BMC Med Res Methodol, 2013, 13(1): 152. |
14 | Ghobadi KN, Roshanaei G, Poorolajal J, et al. The estimation of long and short term survival time and associated factors of HIV patients using mixture cure rate models[J]. BMC Med Res Methodol, 2023, 23(1): 123. |
15 | Castellino SM, Pei QL, Parsons SK, et al. Brentuximab vedotin with chemotherapy in pediatric high-risk Hodgkin's lymphoma[J]. N Engl J Med, 2022, 387(18): 1649-60. |
16 | Mirza MR, Chase DM, Slomovitz BM, et al. Dostarlimab for primary advanced or recurrent endometrial cancer[J]. N Engl J Med, 2023, 388(23): 2145-58. |
17 | Gounder M, Ratan R, Alcindor T, et al. Nirogacestat, a γ-secretase inhibitor for desmoid tumors[J]. N Engl J Med, 2023, 388(10): 898-912. |
18 | Hsu CY, Lin EPY, Shyr Y. Development and evaluation of a method to correct misinterpretation of clinical trial results with long-term survival[J]. JAMA Oncol, 2021, 7(7): 1041-4. |
19 | Lin EP, Hsu CY, Berry L, et al. Analysis of cancer survival associated with immune checkpoint inhibitors after statistical adjustment: a systematic review and meta-analyses[J]. JAMA Netw Open, 2022, 5(8): e2227211. |
20 | Lin EPY, Hsu CY, Chiou JF, et al. Cox proportional hazard ratios overestimate survival benefit of immune checkpoint inhibitors: cox-TEL adjustment and meta-analyses of programmed death-ligand 1 expression and immune checkpoint inhibitor survival benefit[J]. J Thorac Oncol, 2022, 17(12): 1365-74. |
21 | Othus M, Barlogie B, Leblanc ML, et al. Cure models as a useful statistical tool for analyzing survival[J]. Clin Cancer Res, 2012, 18(14): 3731-6. |
22 | Webb A, Ma J, Lô SN. Penalized likelihood estimation of a mixture cure Cox model with partly interval censoring-An application to thin melanoma[J]. Stat Med, 2022, 41(17): 3260-80. |
23 | Zhou XX, Song XY. Mediation analysis for mixture Cox proportional hazards cure models[J]. Stat Methods Med Res, 2021, 30(6): 1554-72. |
24 | Wang SF, Zhang JJ, Lu WB. Sample size calculation for the proportional hazards cure model[J]. Stat Med, 2012, 31(29): 3959-71. |
25 | Cai C, Zou YB, Peng YW, et al. Smcure: an R-package for estimating semiparametric mixture cure models[J]. Comput Methods Programs Biomed, 2012, 108(3): 1255-60. |
26 | Kuk AYC, Chen CH. A mixture model combining logistic regression with proportional hazards regression[J]. Biometrika, 1992, 79(3): 531-41. |
27 | Xue YY, Li GP, Xie T, et al. Concurrent chemoradiotherapy versus radiotherapy alone for stage II nasopharyngeal carcinoma in the era of intensity-modulated radiotherapy[J]. Eur Arch Otorhinolaryngol, 2023, 280(7): 3097-106. |
28 | 肖媛媛, 陈 莹, 何利平, 等. 不同删失比例下AFT模型与Cox模型表现比较的模拟研究[J]. 中国卫生统计, 2017, 34(4): 676-80. |
29 | 钱 俊, 刘国庆, 周业明. 不同删失比例下生存数据模拟生成的方法[J]. 数理医药学杂志, 2013, 26(6): 644-6. DOI: 10.3969/j.issn.1004-4337.2013.06.004 |
30 | 肖媛媛, 许传志, 赵耐青. 含特定比例均匀随机删失生存数据的SAS模拟实现[J]. 中国卫生统计, 2016, 33(6): 1058-9, 1062. |
31 | 蔡丽馨, 仲子航, 杨 旻, 等. 指定删失比例的生存数据模拟及R实现[J]. 中国卫生统计, 2022, 39(1): 143-8. |
32 | Choueiri TK, Tomczak P, Park SH, et al. Adjuvant pembrolizumab after nephrectomy in renal-cell carcinoma[J]. N Engl J Med, 2021, 385(8): 683-94. |
[1] | CHEN Yuxuan, WEI Hongxia, PAN Jianhong, AN Shengli. Comparison of prediction ability of two extended Cox models in nonlinear survival data analysis [J]. Journal of Southern Medical University, 2023, 43(1): 76-84. |
[2] | ZHANG Xiaofeng, YANG Zi, HU Qiuzi, ZUO Lugen, SONG Xue, GENG Zhijun, LI Jing, WANG Yueyue, GE Sitang, HU Jianguo. Centromere protein U is highly expressed in colorectal cancer and associated with a poor long-term prognosis [J]. Journal of Southern Medical University, 2022, 42(8): 1198-1204. |
[3] | LI Qingqing, QIU Quanwei, ZHANG Lele, ZHANG Xiaofeng, WANG Yueyue, GENG Zhijun, GE Sitang, ZUO Lugen, SONG Xue, LI Jing, HU Jianguo. ALDH3B1 expression is correlated with histopathology and long-term prognosis of gastric cancer [J]. Journal of Southern Medical University, 2022, 42(5): 633-640. |
[4] | . Influence of group sample size on statistical power of tests for quantitative data with an imbalanced design [J]. Journal of Southern Medical University, 2020, 40(05): 713-717. |
[5] | . Application of conditional inference forest in time-to-event data analysis [J]. Journal of Southern Medical University, 2020, 40(04): 475-482. |
[6] | . Prognostic significance and risk factors of minimal residual disease ≥1% on 19th day of induction chemotherapy in children with acute lymphoblastic leukemia [J]. Journal of Southern Medical University, 2020, 40(02): 255-261. |
[7] | . Association of adenylate cyclase-associated protein 2 expression with histopathology and long-term prognosis of gastric cancer [J]. Journal of Southern Medical University, 2019, 39(09): 1052-. |
[8] | . Recurrence and survival analysis of postoperative patients aged 25 to 59 years with differentiated thyroid carcinoma [J]. Journal of Southern Medical University, 2017, 37(02): 274-. |
[9] | . Cataract surgery and intraocular lens power calculation after radial keratotomy: analysis of 8 cases [J]. Journal of Southern Medical University, 2015, 35(07): 1043-. |
[10] | DENG Ai-wen1, YUANG Xue-guang1, WEI Dong2, ZHANG Jian-hong2, RAN Chun-feng1, WANG Min1. Effect of power-frequency electromagnetic fields on stroke during rehabilitation [J]. Journal of Southern Medical University, 2004, 24(08): 946-949,952. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||