1 |
Loh PR, Genovese G, McCarroll SA. Monogenic and polygenic inheritance become instruments for clonal selection[J]. Nature, 2020, 584(7819): 136-41.
|
2 |
Bell CJ, Dinwiddie DL, Miller NA, et al. Carrier testing for severe childhood recessive diseases by next-generation sequencing[J]. Sci Transl Med, 2011, 3(65): 65ra4.
|
3 |
Henneman L, Borry P, Chokoshvili D, et al. Responsible implementation of expanded carrier screening[J]. Eur J Hum Genet, 2017, 25(11): 1291.
|
4 |
Haque IS, Lazarin GA, Kang HP, et al. Modeled fetal risk of genetic diseases identified by expanded carrier screening[J]. JAMA, 2016, 316(7): 734-42.
|
5 |
Antonarakis SE. Carrier screening for recessive disorders[J]. Nat Rev Genet, 2019, 20(9): 549-61.
|
6 |
Rose NC, Wick M. Carrier screening for single gene disorders[J]. Semin Fetal Neonatal Med, 2018, 23(2): 78-84.
|
7 |
Gregg AR, Aarabi M, Klugman S, et al. Screening for autosomal recessive and X-linked conditions during pregnancy and preconception: a practice resource of the American College of Medical Genetics and Genomics (ACMG)[J]. Genet Med, 2021, 23(10): 1793-806.
|
8 |
Committee opinion No. 690: carrier screening in the age of genomic medicine[J]. Obstet Gynecol, 2017, 129(3): e35-40.
|
9 |
Nussbaum RL, Slotnick RN, Risch NJ. Challenges in providing residual risks in carrier testing[J]. Prenat Diagn, 2021, 41(9): 1049-56.
|
10 |
Johansen Taber K, Ben-Shachar R, Torres R, et al. A guidelines-consistent carrier screening panel that supports equity across diverse populations[J]. Genet Med, 2022, 24(1): 201-13.
|
11 |
Chau JFT, Yu MHC, Chui MMC, et al. Comprehensive analysis of recessive carrier status using exome and genome sequencing data in 1543 Southern Chinese[J]. NPJ Genom Med, 2022, 7(1): 23.
|
12 |
Fang YQ, Li JR, Zhang MM, et al. Clinical application value of expanded carrier screening in the population of childbearing age[J]. Eur J Med Res, 2023, 28(1): 151.
|
13 |
Chen SC, Zhou XY, Li SY, et al. Carrier burden of over 300 diseases in Han Chinese identified by expanded carrier testing of 300 couples using assisted reproductive technology[J]. J Assist Reprod Genet, 2023, 40(9): 2157-73.
|
14 |
Zhao SM, Xiang JL, Fan CN, et al. Pilot study of expanded carrier screening for 11 recessive diseases in China: results from 10, 476 ethnically diverse couples[J]. Eur J Hum Genet, 2019, 27(2): 254-62.
|
15 |
Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141, 456 humans[J]. Nature, 2020, 581(7809): 434-43.
|
16 |
Hu P, Tan JX, Yu F, et al. A capillary electrophoresis-based multiplex PCR assay for expanded carrier screening in the eastern Han Chinese population[J]. NPJ Genom Med, 2022, 7(1): 6.
|
17 |
Sparks TN. Expanded carrier screening: counseling and considerations[J]. Hum Genet, 2020, 139(9): 1131-9.
|
18 |
中国妇幼保健协会生育保健分会, 黄荷凤, 徐晨明, 等. 针对生育人群的携带者筛查实验室和临床实践专家共识[J]. 中华生殖与避孕杂志, 2024, 10(2): 109-15. DOI: 10.3760/cma.j.cn101441-20230829-00094
|
19 |
Shen J, Oza AM, del Castillo I, et al. Consensus interpretation of the p.Met34Thr and p.Val37Ile variants in GJB2 by the ClinGen Hearing Loss Expert Panel[J]. Genet Med, 2019, 21: 2442-52.
|
20 |
Huang SS, Huang BQ, Wang GJ, et al. The relationship between the p.V37I mutation in GJB2 and hearing phenotypes in Chinese individuals[J]. PLoS One, 2015, 10(6): e0129662.
|
21 |
Barczykowski AL, Foss AH, Duffner PK, et al. Death rates in the U.S. due to Krabbe disease and related leukodystrophy and lysosomal storage diseases[J]. Am J Med Genet A, 2012, 158A(11): 2835-42.
|
22 |
Furuya H, Kukita Y, Nagano S, et al. Adult onset globoid cell leukodystrophy (Krabbe disease): analysis of galactosylceramidase cDNA from four Japanese patients[J]. Hum Genet, 1997, 100(3/4): 450-6.
|
23 |
Satoh JI, Tokumoto H, Kurohara K, et al. Adult-onset Krabbe disease with homozygous T1853C mutation in the galacto-cerebrosidase gene. Unusual MRI findings of corticospinal tract demyelination[J]. Neurology, 1997, 49(5): 1392-9.
|
24 |
Hossain MA, Otomo T, Saito S, et al. Late-onset Krabbe disease is predominant in Japan and its mutant precursor protein undergoes more effective processing than the infantile-onset form[J]. Gene, 2014, 534(2): 144-54.
|
25 |
Zhao S, Zhan X, Wang Y, et al. Large-scale study of clinical and biochemical characteristics of Chinese patients diagnosed with Krabbe disease[J]. Clin Genet, 2018, 93(2): 248-54.
|
26 |
Zhou X, Yin WW, Yu XF, et al. Adult-onset Krabbe disease due to a homozygous GALC mutation without abnormal signals on an MRI in a consanguineous family: a case report[J]. Mol Genet Genomic Med, 2020, 8(9): e1407.
|
27 |
Cappellini MD, Fiorelli G. Glucose-6-phosphate dehydrogenase deficiency[J]. Lancet, 2008, 371(9606): 64-74.
|
28 |
Atay E, Bozaykut A, Ipek IO. Glucose-6-phosphate dehydrogenase deficiency in neonatal indirect hyperbilirubinemia[J]. J Trop Pediatr, 2006, 52(1): 56-8.
|
29 |
Katar S. Glucose-6-phosphate dehydrogenase deficiency and kernicterus of South-East Anatolia[J]. J Pediatr Hematol Oncol, 2007, 29(5): 284-6.
|
30 |
Mao R, Nelson L, Kates R, et al. Prenatal diagnosis of 21-hydroxylase deficiency caused by gene conversion and rearrangements: pitfalls and molecular diagnostic solutions[J]. Prenat Diagn, 2002, 22(13): 1171-6.
|
31 |
Ogino S, Wilson RB. Genetic testing and risk assessment for spinal muscular atrophy (SMA)[J]. Hum Genet, 2002, 111(6): 477-500.
|
32 |
Talbot K, Ponting CP, Theodosiou AM, et al. Missense mutation clustering in the survival motor neuron gene: a role for a conserved tyrosine and glycine rich region of the protein in RNA metabolism?[J]. Hum Mol Genet, 1997, 6(3): 497-500.
|
33 |
Verhaart IEC, Robertson A, Wilson IJ, et al. Prevalence, incidence and carrier frequency of 5q-linked spinal muscular atrophy-a literature review[J]. Orphanet J Rare Dis, 2017, 12(1): 124.
|
34 |
Buckley LE, Hopkins MK, Kuller JA. The evolving landscape of genetic carrier screening: clinical considerations and challenges[J]. Obstet Gynecol Surv, 2023, 78(7): 483-9.
|