Journal of Southern Medical University ›› 2019, Vol. 39 ›› Issue (10): 1160-.doi: 10.12122/j.issn.1673-4254.2019.10.05
Previous Articles Next Articles
Online:
Published:
Abstract: Objective To observe the effect of occlusal interference on the afferent pathway of the trigeminal nerve and neuronal excitability in the trigeminal subnucleus caudalis (SPVC) of rats by electrical stimulation of the trigeminal ganglion (TG) and extracellular recordings of SPVC activities. Methods Twenty male Wistar rats were randomly divided into control group and model group (n=10). In the model group, occlusal interference for 30 consecutive days was induced using light-cured flowable resin on the right maxillary molars. During occlusal interference, the pain sensitivity was scored with von Frey Fibers in the masseter. Simultaneous recordings of electrical activities from the SPVC, electrocardiogram, body temperature and electromyogram of the breath muscles of the anesthetized rats were performed, and the responses evoked by electrical stimulation of the TG were analyzed. Results Compared with the control rats, the rats in the model group showed significantly increased pain sensitivity scores (P<0.05) and increased spontaneous discharge frequency of the SPVC (P<0.05). The amplitude of the SPVC responses induced by electrical stimulation of the TG showed stimulus intensity-dependent changes (P<0.05), and the amplitude evoked by 4 mA and 8 mA stimulation was similar between the model group and the control group (P>0.05). Train stimulation (0.2 ms, 1 mA, 30 s, 100 Hz) of the TG significantly increased the discharge frequency of the SPVC only in the rats in the model group (P<0.05). Conclusion The functional activities of the pain afferent pathway of the trigeminal nerve can be electrophysiologically monitored by electrical stimulation of the TG and extracellular recordings of SPVC activities in rats. Occlusal interference can increase the excitability of the neurons in the SPVC and enhance their sensitivities to TG afferent activation, suggesting the neural plasticity of the pain afferent pathway.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2019.10.05
https://www.j-smu.com/EN/Y2019/V39/I10/1160