1 |
Raoof S, Feigin D, Sung A, et al. Interpretation of plain chest roentgenogram[J]. Chest, 2012, 141(2): 545-58. doi:10.1378/chest.10-1302
|
2 |
Jing BY, Xie PT, Xing E. On the automatic generation of medical imaging reports[EB/OL]. 2017. . doi:10.18653/v1/p18-1240
|
3 |
Vinyals O, Toshev A, Bengio S, et al. Show and tell: a neural image caption generator[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015: 3156-64. doi:10.1109/cvpr.2015.7298935
|
4 |
Liu FL, Yin CC, Wu X, et al. Contrastive attention for automatic chest X-ray report generation[EB/OL]. 2021. . doi:10.18653/v1/2021.findings-acl.23
|
5 |
Johnson AEW, Pollard TJ, Greenbaum NR, et al. MIMIC-CXR-JPG, a large publicly available database of labeled chest radiographs[EB/OL]. 2019. . doi:10.1038/s41597-019-0322-0
|
6 |
Demner-Fushman D, Kohli MD, Rosenman MB, et al. Preparing a collection of radiology examinations for distribution and retrieval[J]. J Am Med Inform Assoc, 2016, 23(2): 304-10. doi:10.1093/jamia/ocv080
|
7 |
Brown T, Mann B, Ryder N, et al. Language models are few-shot learners [J]. Adv Neural Information Processing Systems, 2020, 33:1877-901.
|
8 |
Huang ZZ, Zhang XF, Zhang ST. KiUT: knowledge-injected U-transformer for radiology report generation[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023: 19809-18. doi:10.1109/cvpr52729.2023.01897
|
9 |
Nguyen HTN, Nie D, Badamdorj T, et al. Automated generation of accurate & fluent medical X-ray reports[EB/OL]. 2021. . doi:10.18653/v1/2021.emnlp-main.288
|
10 |
Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 4700-8. doi:10.1109/cvpr.2017.243
|
11 |
Huang L, Wang WM, Chen J, et al. Attention on attention for image captioning[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019: 4634-43. doi:10.1109/iccv.2019.00473
|
12 |
Vaswani A, Shazeer N, Parmar N, et al. Polosukhin, "Attention is all you need"[J]. Adv Neural Information Processing Systems, 2017,30: 1305.
|
13 |
Tran A, Mathews A, Xie LX. Transform and tell: entity-aware news image captioning[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 13035-45. doi:10.1109/cvpr42600.2020.01305
|
14 |
Pan YW, Yao T, Li YH, et al. X-linear attention networks for image captioning[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 10971-80. doi:10.1109/cvpr42600.2020.01098
|
15 |
Cornia M, Stefanini M, Baraldi L, et al. Meshed-memory transformer for image captioning[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 10578-87. doi:10.1109/cvpr42600.2020.01059
|
16 |
Nguyen VQ, Suganuma M, Okatani T. GRIT: faster and better image captioning transformer using dual visual features[M]//Cham: Springer Nature Switzerland, 2022: 167-84. doi:10.1007/978-3-031-20059-5_10
|
17 |
Xu K, Ba J, Kiros R,et al. Show, attend and tell: Neural image caption generation with visual attention[J]. Computer Science, 2015, (2): 2048-57. doi:10.1109/cvpr.2015.7298935
|
18 |
Jing BY, Wang ZY, Xing E. Show, describe and conclude: on exploiting the structure information of chest X-ray reports[EB/OL]. 2020. . doi:10.18653/v1/p19-1657
|
19 |
Liu G, Hsu H, McDermott M, et al. Clinically accurate chest x-ray report generation[J]. PMLR, 2019, 106: 249-69.
|
20 |
Chen ZH, Shen YL, Song Y, et al. Cross-modal memory networks for radiology report generation[EB/OL]. 2022. . doi:10.18653/v1/2021.acl-long.459
|
21 |
Chen ZH, Song Y, Chang TH, et al. Generating radiology reports via memory-driven transformer[EB/OL]. 2020. . doi:10.18653/v1/2020.emnlp-main.112
|
22 |
Li M, Liu R, Wang F, et al. Auxiliary signal-guided knowledge encoder-decoder for medical report generation[J]. World Wide Web, 2023, 26(1): 253-70. doi:10.1007/s11280-022-01013-6
|
23 |
Wang J, Bhalerao A, He YL. Cross-modal prototype driven network for radiology report generation[M]//Computer Vision. Springer Nature Switzerland, 2022: 563-79. doi:10.1007/978-3-031-19833-5_33
|
24 |
Liu FL, Wu X, Ge S, et al. Exploring and distilling posterior and prior knowledge for radiology report generation[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021: 13753-62. doi:10.1109/cvpr46437.2021.01354
|
25 |
Zhang Y, Wang X, Xu Z, et al. When radiology report generation meets knowledge graph [C]// Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12910-7. doi:10.1609/aaai.v34i07.6989
|
26 |
Yin CC, Qian BY, Wei JS, et al. Automatic generation of medical imaging diagnostic report with hierarchical recurrent neural network[C]//2019 IEEE International Conference on Data Mining (ICDM), 2019: 728-37. doi:10.1109/icdm.2019.00083
|
27 |
You D, Liu FL, Ge S, et al. AlignTransformer: hierarchical alignment of visual regions and disease tags for medical report generation[C]//Medical Image Computing and Computer Assisted Intervention, 2021: 72-82. doi:10.1007/978-3-030-87199-4_7
|
28 |
Wang ZY, Tang MK, Wang L, et al. A medical semantic-assisted transformer for radiographic report generation[C]//Medical Image Computing and Computer Assisted Intervention, 2022: 655-64. doi:10.1007/978-3-031-16437-8_63
|
29 |
Yang S, Wu X, Ge S, et al. Knowledge matters: Chest radiology report generation with general and specific knowledge[J]. Med Image Anal, 2022, 80: 102510. doi:10.1016/j.media.2022.102510
|
30 |
Wang ZY, Liu LQ, Wang L, et al. METransformer: radiology report generation by transformer with multiple learnable expert tokens[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023: 11558-67. doi:10.1109/cvpr52729.2023.01112
|
31 |
Li M, Lin B, Chen Z, et al. Dynamic graph enhanced contrastive learning for chest x-ray report generation[C]//2023 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2023: 3334-43. doi:10.1109/cvpr52729.2023.00325
|
32 |
Tanida T, Müller P, Kaissis G, et al.Interactive and explainable region-guided radiology report generation[C]//IEEE/CVF Con-ference on Computer Vision and Pattern Recognition, 2023: 7433-42. doi:10.1109/cvpr52729.2023.00718
|