| [1] | 
																						 
											 Yan Q. Distribution characteristics and historical causes of unreco-gnized ethnic populations in Guizhou [J]. Popular Business, 2009, (2): 27-31.
											 											 | 
										
																													
																						| [2] | 
																						 
											 李良品. 贵州方志中有关“穿青人” 及其先民族源和族称的记载[J]. 贵州民族研究, 2011, 32(2): 159-66.
											 											 | 
										
																													
																						| [3] | 
																						 
											 黄锦树. 贵州穿青人族属考析: 与畲族同出古帝少昊[J]. 韩山师范学院学报, 2013, 34(1): 21-9.
											 											 | 
										
																													
																						| [4] | 
																						 
											 Liu Y, Zhang H, He G, et al. Forensic features and population genetic structure of Dong, Yi, Han, and chuanqing human populations in southwest China inferred from insertion/deletion markers[J]. Front Genet, 2020, 11: 360. doi:10.3389/fgene.2020.00360 
											 											 | 
										
																													
																						| [5] | 
																						 
											 Lu J, Zhang H, Ren Z, et al. Genome-wide analysis of unrecognised ethnic group Chuanqing people revealing a close affinity with Southern Han Chinese[J]. Ann Hum Biol, 2020, 47(5): 465-71. doi:10.1080/03014460.2020.1782470 
											 											 | 
										
																													
																						| [6] | 
																						 
											 李思睿. 中间群体、边民与他者: 贵州穿青人的族群形成和认同[J]. 青海民族研究, 2017, 28(1): 61-4. doi:10.ssss/j.issn.1005-5681.2017.1.014 
											 											 | 
										
																													
																						| [7] | 
																						 
											 Chen P, He G, Xing H, et al. Forensic characteristics and phylogenetic analysis of 23 Y-STR loci in the Miao population from Guizhou province, southwest China[J]. Ann Hum Biol, 2019, 46(1): 84-7. doi:10.1080/03014460.2019.1583374 
											 											 | 
										
																													
																						| [8] | 
																						 
											 Luo L, Gao H, Yao L, et al. Genetic diversity, forensic feature, and phylogenetic analysis of Guizhou Tujia population via 19 X-STRs[J]. Mol Genet Genomic Med, 2020, 8(11): e1473. doi:10.1002/mgg3.1473 
											 											 | 
										
																													
																						| [9] | 
																						 
											 Zhang H, Huang X, Jin X, et al. Comprehensive analyses of genetic diversities and population structure of the Guizhou Dong group based on 44 Y-markers[J]. PeerJ, 2023, 11: e16183. doi:10.7717/peerj.16183 
											 											 | 
										
																													
																						| [10] | 
																						 
											 赵勤松, 任 峥, 张红玲, 等. 贵州汉族1 9 个STR基因座多态性及法医学应用[J]. 法医学杂志, 2017, 33(4): 388-92.
											 											 | 
										
																													
																						| [11] | 
																						 
											 Zhang H, Yang M, Zhang H, et al. Forensic features and phylogenetic structure survey of four populations from southwest China via the autosomal insertion/deletion markers[J]. Forensic Sci Res, 2024, 9(2): owad052. doi:10.1093/fsr/owae059 
											 											 | 
										
																													
																						| [12] | 
																						 
											 Yang CH, Jin XY, Guo YX, et al. Genetic distribution analyses and population background explorations of Gansu Yugur and Guizhou Miao groups via InDel markers[J]. J Hum Genet, 2019, 64(6): 535-43. doi:10.1038/s10038-019-0595-3 
											 											 | 
										
																													
																						| [13] | 
																						 
											 Chen J, He G, Ren Z, et al. Fine-scale population admixture landscape of Tai-kadai-speaking Maonan in southwest China inferred from genome-wide SNP data[J]. Front Genet, 2022, 13: 815285. doi:10.3389/fgene.2022.815285 
											 											 | 
										
																													
																						| [14] | 
																						 
											 罗 雪, 张文飞, 杨 林, 等. 贵州水族人群11个Y-SNP位点的多态性及法医学应用[J]. 法医学杂志, 2020, 36(6): 791-6. doi:10.12116/j.issn.1004-5619.2020.06.008 
											 											 | 
										
																													
																						| [15] | 
																						 
											 Cui W, Chen M, Yang Y, et al. Applications of 1993 single nucleotide polymorphism loci in forensic pairwise kinship identifications and inferences[J]. Forensic Sci Int Genet, 2023, 65: 102889. doi:10.1016/j.fsigen.2023.102889 
											 											 | 
										
																													
																						| [16] | 
																						 
											 Pakstis AJ, Haigh E, Cherni L, et al. 52 additional reference population samples for the 55 AISNP panel[J]. Forensic Sci Int Genet, 2015, 19: 269-71. doi:10.1016/j.fsigen.2015.08.003 
											 											 | 
										
																													
																						| [17] | 
																						 
											 Kidd KK, Pakstis AJ, Speed WC, et al. Microhaplotype loci are a powerful new type of forensic marker[J]. Forensic Sci Int Genet Suppl Ser, 2013, 4(1): e123-4. doi:10.1016/j.fsigss.2013.10.063 
											 											 | 
										
																													
																						| [18] | 
																						 
											 Oldoni F, Kidd KK, Podini D. Microhaplotypes in forensic genetics[J]. Forensic Sci Int Genet, 2019, 38: 54-69. doi:10.1016/j.fsigen.2020.102398 
											 											 | 
										
																													
																						| [19] | 
																						 
											 Chandra D, Mishra VC, Raina A, et al. Mutation rate evaluation at 21 autosomal STR loci: Paternity testing experience[J]. Leg Med, 2022, 58: 102080. doi:10.1016/j.legalmed.2022.102080 
											 											 | 
										
																													
																						| [20] | 
																						 
											 Wen D, Xing H, Liu Y, et al. The application of short and highly polymorphic microhaplotype loci in paternity testing and sibling testing of temperature-dependent degraded samples[J]. Front Genet, 2022, 13: 983811. doi:10.3389/fgene.2022.983811 
											 											 | 
										
																													
																						| [21] | 
																						 
											 Fan H, Xie Q, Wang L, et al. Microhaplotype and Y-SNP/STR (MY): a novel MPS-based system for genotype pattern recognition in two-person DNA mixtures[J]. Forensic Sci Int Genet, 2022, 59: 102705. doi:10.1016/j.fsigen.2022.102705 
											 											 | 
										
																													
																						| [22] | 
																						 
											 Cheung EYY, Phillips C, Eduardoff M, et al. Performance of ancestry-informative SNP and microhaplotype markers[J]. Forensic Sci Int Genet, 2019, 43: 102141. doi:10.1016/j.fsigen.2019.102141 
											 											 | 
										
																													
																						| [23] | 
																						 
											 de Barros Rodrigues ML, Rodrigues MP, Norton HL, et al. Large-scale selection of highly informative microhaplotypes for ancestry inference and population specific informativeness[J]. Forensic Sci Int Genet, 2025, 74: 103153. doi:10.1016/j.fsigen.2024.103153 
											 											 | 
										
																													
																						| [24] | 
																						 
											 de la Puente M, Ruiz-Ramírez J, Ambroa-Conde A, et al. Broadening the applicability of a custom multi-platform panel of microhaplotypes: bio-geographical ancestry inference and expanded reference data[J]. Front Genet, 2020, 11: 581041. doi:10.3389/fgene.2020.581041 
											 											 | 
										
																													
																						| [25] | 
																						 
											 Huang SN, Sheng MC, Li Z, et al. Inferring bio-geographical ancestry with 35 microhaplotypes[J]. Forensic Sci Int, 2022, 341: 111509. doi:10.1016/j.forsciint.2022.111509 
											 											 | 
										
																													
																						| [26] | 
																						 
											 Pakstis AJ, Gandotra N, Speed WC, et al. The population genetics characteristics of a 90 locus panel of microhaplotypes[J]. Hum Genet, 2021, 140(12): 1753-73. doi:10.1007/s00439-021-02382-0 
											 											 | 
										
																													
																						| [27] | 
																						 
											 Yu WS, Feng YS, Kang KL, et al. Screening of highly discriminative microhaplotype markers for individual identification and mixture deconvolution in East Asian populations[J]. Forensic Sci Int Genet, 2022, 59: 102720. doi:10.1016/j.fsigen.2022.102720 
											 											 | 
										
																													
																						| [28] | 
																						 
											 Zou X, He GL, Liu J, et al. Screening and selection of 21 novel microhaplotype markers for ancestry inference in ten Chinese subpopulations[J]. Forensic Sci Int Genet, 2022, 58: 102687. doi:10.1016/j.fsigen.2022.102687 
											 											 | 
										
																													
																						| [29] | 
																						 
											 Gu C, Huo W, Huang X, et al. Developmental and validation of a novel small and high-efficient panel of microhaplotypes for forensic genetics by the next generation sequencing[J]. BMC Genomics, 2024, 25(1): 958. doi:10.1186/s12864-024-10880-4 
											 											 | 
										
																													
																						| [30] | 
																						 
											 邹 星. 法医物证族源推断的新微单倍型遗传标记研究[D]. 成都: 四川大学, 2021.
											 											 | 
										
																													
																						| [31] | 
																						 
											 Byrska-Bishop M, Evani US, Zhao XF, et al. High-coverage whole-genome sequencing of the expanded 1000 Genomes Project cohort including 602 trios[J]. Cell, 2022, 185(18): 3426-40.e19.
											 											 | 
										
																													
																						| [32] | 
																						 
											 Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114-20. doi:10.1093/bioinformatics/btu170 
											 											 | 
										
																													
																						| [33] | 
																						 
											 Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25(14): 1754-60. doi:10.1093/bioinformatics/btp324 
											 											 | 
										
																													
																						| [34] | 
																						 
											 Gouy A, Zieger M. STRAF: a convenient online tool for STR data evaluation in forensic genetics[J]. Forensic Sci Int Genet, 2017, 30: 148-51. doi:10.1016/j.fsigen.2017.07.007 
											 											 | 
										
																													
																						| [35] | 
																						 
											 Rousset F. genepop'007: a complete re-implementation of the genepop software for Windows and Linux[J]. Mol Ecol Resour, 2008, 8(1): 103-6. doi:10.1111/j.1471-8286.2007.01931.x 
											 											 | 
										
																													
																						| [36] | 
																						 
											 Ota T. DISPAN: genetic distance and phylogenetic analysis[J]. Pennsylvania State University, University Park, PA, 1993.
											 											 | 
										
																													
																						| [37] | 
																						 
											 Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Mol Biol Evol, 2018, 35(6): 1547-9. doi:10.1093/molbev/msy096 
											 											 | 
										
																													
																						| [38] | 
																						 
											 Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies[J]. Genetics, 2003, 164(4): 1567-87. doi:10.1093/genetics/164.4.1567 
											 											 | 
										
																													
																						| [39] | 
																						 
											 Earl DA, VonHoldt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method[J]. Conserv Genet Resour, 2012, 4(2): 359-61. doi:10.1007/s12686-011-9548-7 
											 											 | 
										
																													
																						| [40] | 
																						 
											 Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimo-dality in analysis of population structure[J]. Bioinformatics, 2007, 23(14): 1801-6. doi:10.1093/bioinformatics/btm233 
											 											 | 
										
																													
																						| [41] | 
																						 
											 Francis RM. Pophelper: an R package and web app to analyse and visualize population structure[J]. Mol Ecol Resour, 2017, 17(1): 27-32. doi:10.1111/1755-0998.12509 
											 											 | 
										
																													
																						| [42] | 
																						 
											 Chen S, Lei C, Zhao X, et al. AncestryPainter 2.0: visualizing ancestry composition and admixture history graph[J]. Genome Biol Evol, 2024, 16(11): evae249. doi:10.1093/gbe/evae249 
											 											 | 
										
																													
																						| [43] | 
																						 
											 雷 勇. 社会历史、宗教生活与族群身份的建构: 以黔西北穿青人为例[J]. 青海民族研究, 2012, 23(4): 11-6. doi:10.3969/j.issn.1005-5681.2012.04.003 
											 											 | 
										
																													
																						| [44] | 
																						 
											 周成勋. 穿青人民族认同问题研究[D]. 贵阳: 贵州民族大学, 2013.
											 											 |