1 |
Waites KB, Xiao L, Liu Y, et al. Mycoplasma pneumoniae from the respiratory tract and beyond[J]. Clin Microbiol Rev, 2017, 30(3): 747-809.
|
2 |
Bajantri B, Venkatram S, Diaz-Fuentes G. Mycoplasma pneumoniae: a potentially severe infection[J]. J Clin Med Res, 2018, 10(7): 535-44.
|
3 |
Zhang ZK, Wan RJ, Yuan Q, et al. Cell damage and neutrophils promote the infection of Mycoplasma pneumoniae and inflammatory response[J]. Microb Pathog, 2022, 169: 105647.
|
4 |
Tamiya S, Yoshikawa E, Ogura M, et al. Vaccination using inactivated Mycoplasma pneumoniae induces detrimental infiltration of neutrophils after subsequent infection in mice[J]. Vaccine, 2020, 38(32): 4979-87.
|
5 |
Meyer Sauteur PM, Beeton ML, European Society of Clinical Microbiology and Infectious Diseases Study Group for Mycoplasma and Chlamydia Infections study group. Mycoplasma pneumoniae: delayed re-emergence after COVID-19 pandemic restrictions[J]. Lancet Microbe, 2024, 5(2): e100-1.
|
6 |
Chen Y, Zhang Y, Tang QN, et al. Efficacy of doxycycline therapy for macrolide-resistant Mycoplasma pneumoniae pneumonia in children at different periods[J]. Ital J Pediatr, 2024, 50(1): 38.
|
7 |
di Pierro F, Colombo M, Zanvit A, et al. Use of Streptococcus salivarius K12 in the prevention of streptococcal and viral pharyngotonsillitis in children[J]. Drug Healthc Patient Saf, 2014, 6: 15-20.
|
8 |
Mokhtar M, Rismayuddin NAR, Mat Yassim AS, et al. Streptococcus salivarius K12 inhibits Candida albicans aggregation, biofilm formation and dimorphism[J]. Biofouling, 2021, 37(7): 767-76.
|
9 |
Laws GL, Hale JDF, Kemp RA. Human systemic immune response to ingestion of the oral probiotic Streptococcus salivarius BLIS K12[J]. Probiotics Antimicrob Proteins, 2021, 13(6): 1521-9.
|
10 |
di Pierro F, Iqtadar S, Mumtaz SU, et al. Clinical effects of Streptococcus salivarius K12 in hospitalized COVID-19 patients: results of a preliminary study[J]. Microorganisms, 2022, 10(10): 1926.
|
11 |
MacDonald KW, Chanyi RM, Macklaim JM, et al. Streptococcus salivarius inhibits immune activation by periodontal disease pathogens[J]. BMC Oral Health, 2021, 21(1): 245.
|
12 |
徐叔云. 药理实验方法学[M]. 3版. 北京: 人民卫生出版社, 2002.
|
13 |
梁珂莹. 应用TaqMan实时荧光定量PCR优化肺炎支原体生长条件的研究[D]. 南华大学,2021.
|
14 |
Iannuzo N, Insel M, Marshall C, et al. CC16 deficiency in the context of early-life Mycoplasma pneumoniae infection results in augmented airway responses in adult mice[J]. Infect Immun, 2022, 90(2): e0054821.
|
15 |
Daniel S, Phillippi D, Schneider LJ, et al. Exposure to diesel exhaust particles results in altered lung microbial profiles, associated with increased reactive oxygen species/reactive nitrogen species and inflammation, in C57Bl/6 wildtype mice on a high-fat diet[J]. Part Fibre Toxicol, 2021, 18(1): 3.
|
16 |
Wang T, Sun HM, Lu ZT, et al. The CARDS toxin of Mycoplasma pneumoniae induces a positive feedback loop of type 1 immune response[J]. Front Immunol, 2022, 13: 1054788.
|
17 |
Li YT, Shao FY, Zheng SW, et al. Alteration of Streptococcus salivarius in buccal mucosa of oral lichen planus and controlled clinical trial in OLP treatment[J]. Probiotics Antimicrob Proteins, 2020, 12(4): 1340-8.
|
18 |
Tamiya S, Yoshikawa E, Ogura M, et al. Neutrophil-mediated lung injury both via TLR2-dependent production of IL-1α and IL-12 p40, and TLR2-independent CARDS toxin after Mycoplasma pneumoniae infection in mice[J]. Microbiol Spectr, 2021, 9(3): e0158821.
|
19 |
Li G, Fan LP, Wang YQ, et al. High co-expression of TNF‑α and CARDS toxin is a good predictor for refractory Mycoplasma pneumoniae pneumonia[J]. Mol Med, 2019, 25(1): 38.
|
20 |
Mei XZ, Wang J, Zhang C, et al. Apigenin suppresses mycoplasma-induced alveolar macrophages necroptosis via enhancing the methylation of TNF‑α promoter by PPARγ‑Uhrf1 axis[J]. Phytomedicine, 2023, 108: 154504.
|
21 |
Chen M, Deng H, Zhao Y, et al. Toll-like receptor 2 modulates pulmonary inflammation and TNF‑α release mediated by Mycoplasma pneumoniae [J]. Front Cell Infect Microbiol, 2022, 12: 824027.
|
22 |
Luo H, He J, Qin L, et al. Mycoplasma pneumoniae lipids license TLR-4 for activation of NLRP3 inflammasome and autophagy to evoke a proinflammatory response[J]. Clin Exp Immunol, 2021, 203(1): 66-79.
|
23 |
Johnson MDL, Younis US, Menghani SV, et al. CC16 binding to α4β1 integrin protects against Mycoplasma pneumoniae infection[J]. Am J Respir Crit Care Med, 2021, 203(11): 1410-8.
|
24 |
Ma Y, Gu YQ, Zhang XX, et al. High expression of MUC5AC, MUC5B, and layilin plays an essential role in prediction in the development of plastic bronchitis caused by MPP[J]. Front Microbiol, 2022, 13: 911228.
|
25 |
Tunçer S, Karaçam S. Cell-free supernatant of Streptococcus salivarius M18 impairs the pathogenic properties of Pseudomonas aeruginosa and Klebsiella pneumonia [J]. Arch Microbiol, 2020, 202(10): 2825-40.
|
26 |
Vertillo Aluisio G, Spitale A, Bonifacio L, et al. Streptococcus salivarius 24SMBc genome analysis reveals new biosynthetic gene clusters involved in antimicrobial effects on Streptococcus pneumoniae and Streptococcus pyogenes [J]. Microorganisms, 2022, 10(10): 2042.
|
27 |
Garcia-Castillo V, Tomokiyo M, Raya Tonetti F, et al. Alveolar macrophages are key players in the modulation of the respiratory antiviral immunity induced by orally administered Lacticasei-bacillus rhamnosus CRL1505[J]. Front Immunol, 2020, 11: 568636.
|
28 |
Zhang NY, Zeng WW, Du TF, et al. Lacticaseibacillus casei CNRZ1874 supplementation promotes M1 alveolar macrophage activation and attenuates Mycoplasma pneumoniae pneumonia[J]. J Appl Microbiol, 2023, 134(3): lxad022.
|