南方医科大学学报 ›› 2022, Vol. 42 ›› Issue (7): 1075-1081.doi: 10.12122/j.issn.1673-4254.2022.07.17
盛江明,薛 娟,李 鹏,伊 娜
SHENG Jiangming, XUE Juan, LI Peng, YI Na
摘要: 目的 探讨利用时空图卷积神经网络在动态蛋白质网络中挖掘复合物的新方法。方法 文中首先定义了边强度、节点强度和边存在概率等指标对动态蛋白质网络进行建模,然后结合图上的时间序列信息和结构信息,基于希尔伯特-黄变换、注意力机制和残差连接等技术设计了2种卷积算子来对网络中蛋白质的特征进行表示学习,构建得到动态蛋白质网络特征图。最后采用谱聚类来识别复合物。结果 在多个公开生物数据集上的仿真实验结果表明,所提算法在DIP数据集和MIPS数据集上的F值都达到了90%以上,相比于DPCMNE、GE-CFI、VGAE和NOCD等4种识别算法而言,识别效率分别平均提高了约34.5%、28.7%、25.4%和17.6%。结论 运用深度学习技术来处理动态蛋白质网络的性能表现良好,具有普适意义。