南方医科大学学报 ›› 2017, Vol. 37 ›› Issue (06): 761-.

• • 上一篇    下一篇

3D生物打印的微结构促进小鼠表皮干细胞的增殖和活性

刘煜凡,黄沙,姚斌,李曌,李想,付小兵,吴旭   

  • 出版日期:2017-06-20 发布日期:2017-06-20

Three-dimensional bioprinted microstructure promotes proliferation and viability of murine epithelial stem cells in vitro

  • Online:2017-06-20 Published:2017-06-20

摘要: 目的探索不同构架的3D微结构对表皮干细胞增殖能力和细胞活性的影响并建立最佳3D生物打印模型。方法通过采 用不同尺寸:210、340、420 μm的打印喷头结合3D生物打印技术构建3种不同的含细胞3D微结构;利用荧光显微镜观察3D微 结构中细胞形态及增殖现象;活/死细胞染色技术检测细胞活性;采用方差分析和样本t检验等方法进行统计学分析。结果3种 不同构架的3D微结构均可促进表皮干细胞增殖;打印后0、3、7 d之间,3组3D微结构在细胞活性水平上均逐步降低且差异有统计 学意义(P<0.01);与7 d时的细胞活性相比,3组3D微结构在14 d时的细胞活性均升高且差异有统计学意义(P<0.01);与210 μm 组和340 μm组相比,420 μm组3D微结构在长期培养中细胞活性水平最高(P<0.01)。结论420 μm组3D微结构能够稳定促进 皮肤替代物中表皮干细胞的增殖能力并维持高细胞活性,为构建3D生物打印组织工程表皮以及全层皮肤模型奠定了基础。

Abstract: Objective To evaluate the effect of different microstructures prepared by three-dimensional (3D) bioprinting on proliferation and viability of the murine epithelial stem cells in vitro. Methods 3D cell-laden microstructures were constructed using 3 different printing nozzles with diameters of 210, 340, and 420 μm. Fluorescence microscopy and the live/dead assay kit were used to observe the proliferation and viability of the murine epithelial stem cells in the microstructures. Results All the 3D cell-laden micro-structures were capable of promoting the proliferation of murine epithelial stem cells. In the 3 groups of micro-structures, the cell viability decreased significantly with time until 7 days after printing (P<0.01), but at 14 days after the printing, the cell viability increased significantly as compared with that at 7 days (P<0.01). The viability of the cells was significantly higher in the microstructure printed using a 420 μm nozzle than in the microstructures printed with 210 μm and 340 μm nozzles (P<0.01). Conclusion The microstructure printed with a 420 μm nozzle can stably promote the proliferation of murine epithelial stem cells and maintain a high level of cell viability, suggesting the feasibility of constructing tissue-engineered epidermis and full-thickness skin graft using 3D bioprinting technique.