[1] |
Yang K, Li JX, Zhang WH, et al. Comparison of pre-chop technique using a reverse chopper and classic stop-and-chop technique in the treatment of high myopia associated with nuclear cataract[J]. BMC Surg, 2022, 22(1): 206. doi:10.1186/s12893-022-01658-0
|
[2] |
Wang JX, Li Y, Musch DC, et al. Progression of myopia in school-aged children after COVID-19 home confinement[J]. JAMA Ophthalmol, 2021, 139(3): 293-300. doi:10.1001/jamaophthalmol.2020.6239
|
[3] |
Ueta T, Makino S, Yamamoto Y, et al. Pathologic myopia: an overview of the current understanding and interventions[J]. Glob Health Med, 2020, 2(3): 151-5. doi:10.35772/ghm.2020.01007
|
[4] |
Hoang QV, Chan X, Zhu XJ, et al. Editorial: advances in management and treatment of high myopia and its complications[J]. Front Med (Lausanne), 2022, 9: 846540. doi:10.3389/fmed.2022.846540
|
[5] |
Vinod K, Salim S. Addressing glaucoma in myopic eyes: diagnostic and surgical challenges[J]. Bioengineering (Basel), 2023, 10(11): 1260. doi:10.3390/bioengineering10111260
|
[6] |
He WW, Yao YQ, Zhang KK, et al. Clinical characteristics and early visual outcomes of highly myopic cataract eyes: the Shanghai high myopia study[J]. Front Med (Lausanne), 2022, 8: 671521. doi:10.3389/fmed.2021.671521
|
[7] |
Du R, Xie SQ, Igarashi-Yokoi T, et al. Continued increase of axial length and its risk factors in adults with high myopia[J]. JAMA Ophthalmol, 2021, 139(10): 1096-103. doi:10.1001/jamaophthalmol.2021.3303
|
[8] |
Tang JC, Liu HH, Sun MS, et al. Aqueous humor cytokine response in the contralateral eye after first-eye cataract surgery in patients with primary angle-closure glaucoma, high myopia or type 2 diabetes mellitus[J]. Front Biosci (Landmark Ed), 2022, 27(7): 222. doi:10.31083/j.fbl2707222
|
[9] |
Hu YR, Han X, Chen Y, et al. Regulation of the inflammatory response, proliferation, migration, and epithelial-mesenchymal transition of human lens epithelial cells by the lncRNA-MALAT1/miR-26a-5p/TET1 signaling axis[J]. J Ophthalmol, 2023, 2023: 9942880. doi:10.1155/2023/9942880
|
[10] |
Han X, Hu YR, Chen Y, et al. Expression of cytokines in the aqueous humor of cataract patients with pathologic myopia and simple high myopia[J]. Mol Vis, 2024, 30: 369-77.
|
[11] |
Misir S, Wu N, Yang BB. Specific expression and functions of circular RNAs[J]. Cell Death Differ, 2022, 29(3): 481-91. doi:10.1038/s41418-022-00948-7
|
[12] |
Zhou YD, Li BY, Wang ZC, et al. m6A modifications of circular RNAs in ischemia-induced retinal neovascularization[J]. Int J Med Sci, 2023, 20(2): 254-61. doi:10.7150/ijms.79409
|
[13] |
Chen X, Wang Y, Wang JN, et al. m6A modification of circSPECC1 suppresses RPE oxidative damage and maintains retinal homeostasis[J]. Cell Rep, 2022, 41(7): 111671. doi:10.1016/j.celrep.2022.111671
|
[14] |
Ma Y, Liu Y, Shu BT, et al. CircMAP3K4 protects human lens epithelial cells from H2O2-induced dysfunction by targeting miR-193a-3p/PLCD3 axis in age-related cataract[J]. Cell Cycle, 2023, 22(3): 303-15. doi:10.1080/15384101.2022.2114587
|
[15] |
Qu B, Wang J, Li Y, et al. Hsa_circ_0023826 protects against glaucoma by regulating miR-188-3p/MDM4 axis[J]. Acta Biochim Pol, 2023, 70(2): 253-60.
|
[16] |
Zhou WY, Cai ZR, Liu J, et al. Circular RNA: metabolism, functions and interactions with proteins[J]. Mol Cancer, 2020, 19(1): 172. doi:10.1186/s12943-020-01286-3
|
[17] |
Fang R, Li JH, Li HL, et al. CircRNA 06209 inhibits cataract development by sponging miR-6848-5p and regulating ALOX15 expression[J]. Exp Eye Res, 2023, 235: 109640. doi:10.1016/j.exer.2023.109640
|
[18] |
Jiang WB, Xiao DC, Wu C, et al. Circular RNA-based therapy provides sustained and robust neuroprotection for retinal ganglion cells[J]. Mol Ther Nucleic Acids, 2024, 35(3): 102258. doi:10.1016/j.omtn.2024.102258
|
[19] |
Zhang WX, He YX, Zhang Y. CircRNA in ocular neovascular diseases: Fundamental mechanism and clinical potential[J]. Pharmacol Res, 2023, 197: 106946. doi:10.1016/j.phrs.2023.106946
|
[20] |
Hu YR, Fan YC, Li N, et al. Expression of LncRNAs in anterior capsule of lens in patients with pathologic myopia complicated with cataract[J]. Int Ophthalmol, 2024, 45(1): 10. doi:10.1007/s10792-024-03366-5
|
[21] |
Sun F, Li N, Liu Y, et al. miR-224-3p regulates ferroptosis and inflammation in lens epithelial cells by targeting ACSL4[J]. Exp Eye Res, 2025, 254: 110306. doi:10.1016/j.exer.2025.110306
|
[22] |
De Piano M, Cacciamani A, Balzamino BO, et al. Biomarker signature in aqueous humor mirrors lens epithelial cell activation: new biomolecular aspects from cataractogenic myopia[J]. Biomolecules, 2023, 13(9): 1328. doi:10.3390/biom13091328
|
[23] |
Liu SY, Jin Z, Xia RY, et al. Protection of human lens epithelial cells from oxidative stress damage and cell apoptosis by KGF-2 through the Akt/Nrf2/HO-1 pathway[J]. Oxid Med Cell Longev, 2022, 2022: 6933812. doi:10.1155/2022/6933812
|
[24] |
Guo CJ, Ning XN, Zhang J, et al. Ultraviolet B radiation induces oxidative stress and apoptosis in human lens epithelium cells by activating NF‑κB signaling to down-regulate sodium vitamin C transporter 2 (SVCT2) expression[J]. Cell Cycle, 2023, 22(12): 1450-62. doi:10.1080/15384101.2023.2215084
|
[25] |
Li ZN, Ge MX, Yuan ZF. microRNA-182-5p protects human lens epithelial cells against oxidative stress-induced apoptosis by inhibiting NOX4 and p38 MAPK signalling[J]. BMC Ophthalmol, 2020, 20(1): 233. doi:10.1186/s12886-020-01489-8
|
[26] |
Janbandhu V, Tallapragada V, Patrick R, et al. Hif-1a suppresses ROS-induced proliferation of cardiac fibroblasts following myocardial infarction[J]. Cell Stem Cell, 2022, 29(2): 281-97.e12. doi:10.1016/j.stem.2021.10.009
|
[27] |
Ma B, Yang L, Jing RH, et al. Effects of Interleukin-6 on posterior capsular opacification[J]. Exp Eye Res, 2018, 172: 94-103. doi:10.1016/j.exer.2018.03.013
|
[28] |
Retamal MA, Altenberg GA. Role and posttranslational regulation of Cx46 hemichannels and gap junction channels in the eye lens[J]. Front Physiol, 2022, 13: 864948. doi:10.3389/fphys.2022.864948
|
[29] |
Huang GQ, Liang M, Liu HY, et al. CircRNA hsa_circRNA_104348 promotes hepatocellular carcinoma progression through modulating miR-187-3p/RTKN2 axis and activating Wnt/β-catenin pathway[J]. Cell Death Dis, 2020, 11(12): 1065. doi:10.1038/s41419-020-03276-1
|
[30] |
Liang SQ, Dou SQ, Li WF, et al. Profiling of circular RNAs in age-related cataract reveals circZNF292 as an antioxidant by sponging miR-23b-3p[J]. Aging (Albany NY), 2020, 12(17): 17271-87. doi:10.18632/aging.103683
|
[31] |
Sun Z, Zhang A, Hou MY, et al. Circular RNA hsa_circ_0000034 promotes the progression of retinoblastoma via sponging microRNA-361-3p[J]. Bioengineered, 2020, 11(1): 949-57. doi:10.1080/21655979.2020.1814670
|