南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (8): 1663-1671.doi: 10.12122/j.issn.1673-4254.2025.08.11
• • 上一篇
李天宏1,2(), 覃新芳1, 韦丽丽1, 毕慧欣1,2(
)
收稿日期:
2024-12-24
出版日期:
2025-08-20
发布日期:
2025-09-05
通讯作者:
毕慧欣
E-mail:1216657063@qq.com;26988436@qq.com
作者简介:
李天宏,硕士,住院医师,E-mail: 1216657063@qq.com
基金资助:
Tianhong LI1,2(), Xinfang QIN1, Lili WEI1, Huixin BI1,2(
)
Received:
2024-12-24
Online:
2025-08-20
Published:
2025-09-05
Contact:
Huixin BI
E-mail:1216657063@qq.com;26988436@qq.com
Supported by:
摘要:
目的 探讨终末期肾病(ESRD)患者血清晚期糖基化终末产物(AGEs)对自体动静脉内瘘(AVF)狭窄的影响。 方法 前瞻性纳入2022年2月~6月于桂林医学院附属医院肾内科住院首次行标准自体动静脉内瘘(AVF)的终末期肾病患者,收集患者术前一般资料、临床检测指标、造瘘前术肢血管超声的数据,采用酶联免疫吸附法(ELISA)检测术前血清AGEs水平。根据术后2个月内是否狭窄分为狭窄组与非狭窄组,比较各组间AGEs及临床指标的差异性,采用Logistic 回归分析法分析动静脉内瘘狭窄的独立危险因素,采用受试者工作特征(ROC)曲线分析AGEs临床风险指标预测动静脉内瘘术后狭窄的灵敏度和特异度。 结果 共纳入94例患者,术后出现动静脉内瘘狭窄34例,未出现动静脉内瘘狭窄60例;狭窄组与非狭窄组间糖尿病患者数量差异具有统计学意义(P<0.001)。Spearman相关性分析提示AGEs水平与磷呈负相关(P<0.05);狭窄组患者血清AGEs水平明显高于非狭窄组(Z=-2.837, P=0.005);多因素Logistic回归分析提示AGEs为动静脉内瘘术后狭窄的独立危险因素(OR=1.251, 95% CI=1.096-1.423, P<0.001);受试者工作特征(ROC)曲线分析提示:AGEs预测自体动静脉内瘘狭窄曲线下面积为0.677(P=0.007, 95% CI:0.572-0.770),最佳截断值为8.43 µg/mL,特异性为90.00%,灵敏度为52.94%;AGEs联合纤维蛋白原预测自体动静脉内瘘狭窄曲线下面积为0.763(P<0.001,95% CI: 0.664-0.844),最佳截断值为0.30,特异性为73.33%,灵敏度为70.59%。 结论 血清AGEs是自体动静脉内瘘术后狭窄的独立危险因素,血清AGEs联合纤维蛋白原构建的风险模型可提高预测自体动静脉内瘘术后狭窄的效能。
李天宏, 覃新芳, 韦丽丽, 毕慧欣. 终末期肾病患者血清晚期糖基化终末产物水平是首次动静脉内瘘术后狭窄的危险因素[J]. 南方医科大学学报, 2025, 45(8): 1663-1671.
Tianhong LI, Xinfang QIN, Lili WEI, Huixin BI. Elevated advanced glycation endproducts is a risk factor for stenosis after primary arteriovenous fistula surgery[J]. Journal of Southern Medical University, 2025, 45(8): 1663-1671.
No | S7 | S6 | S5 | S4 | S3 | S2 | S1 | S0 |
---|---|---|---|---|---|---|---|---|
µg/mL | 50 | 25 | 12.5 | 6.25 | 3.12 | 1.56 | 0.78 | 0 |
表 1 标准品浓度
Tab.1 Concentration of standard AGEs samples
No | S7 | S6 | S5 | S4 | S3 | S2 | S1 | S0 |
---|---|---|---|---|---|---|---|---|
µg/mL | 50 | 25 | 12.5 | 6.25 | 3.12 | 1.56 | 0.78 | 0 |
Variables | Stenosis group (n=34) | Non-stenosis group (n=60) | x2 /Z/t | P |
---|---|---|---|---|
Age (year, Mean±SD) | 58±13 | 54±13 | 1.340 | 0.183 |
Gender (male/female) [n (%)] | 19/15 (55.88) | 36/24 (60.00) | 0.152 | 0.697 |
Hyperlipemia [n (%)] | 10 (29.41) | 10 (16.67) | 2.105 | 0.147 |
Hypertension [n (%)] | 28 (82.35) | 55 (91.67) | 1.822 | 0.177 |
Smoking history [n (%)] | 5 (14.71) | 12 (20.00) | 0.411 | 0.522 |
Diabetes [n (%)] | 18 (52.94) | 5 (8.33) | 23.367 | <0.001 |
表2 狭窄组与非狭窄组患者AVF 术前一般资料的比较
Tab.2 Comparison of preoperative general data of patients with and without postoperative arteriovenous fistula (AVF) stenosis
Variables | Stenosis group (n=34) | Non-stenosis group (n=60) | x2 /Z/t | P |
---|---|---|---|---|
Age (year, Mean±SD) | 58±13 | 54±13 | 1.340 | 0.183 |
Gender (male/female) [n (%)] | 19/15 (55.88) | 36/24 (60.00) | 0.152 | 0.697 |
Hyperlipemia [n (%)] | 10 (29.41) | 10 (16.67) | 2.105 | 0.147 |
Hypertension [n (%)] | 28 (82.35) | 55 (91.67) | 1.822 | 0.177 |
Smoking history [n (%)] | 5 (14.71) | 12 (20.00) | 0.411 | 0.522 |
Diabetes [n (%)] | 18 (52.94) | 5 (8.33) | 23.367 | <0.001 |
Variables | Stenosis group (n=34) | Non-stenosis group (n=60) | t/Z | P |
---|---|---|---|---|
RBC (1012/L) | 2.87 (2.55, 3.13) | 2.85±0.67 | -0.024 | 0.981 |
WBC (109/L) | 8.06 (5.89, 9.50) | 7.15 (5.75, 9.07) | -1.137 | 0.256 |
Hb (g/L) | 80.83±17.54 | 80.29±17.37 | -0.144 | 0.886 |
PLT (109/L) | 259.24±93.72 | 190.50 (166.25, 239.75) | -2.526 | <0.05 |
NEUT (109/L) | 5.19 (4.14, 7.36) | 5.01 (3.91, 6.55) | -0.952 | 0.341 |
LY (109/L) | 1.27 (0.94, 1.72) | 1.21 (0.81, 1.51) | -1.003 | 0.316 |
NLR | 4.15 (2.91, 5.50) | 3.81 (2.69, 6.31) | -0.362 | 0.717 |
PLR | 212.40±91.31 | 172.60 (117.48, 231.73) | -1.180 | 0.238 |
Alb (g/L) | 37.40 (33.78, 40.50) | 37.65 (34.40, 39.68) | -0.354 | 0.723 |
TC (mmol/L)) | 4.31±1.07 | 3.94±1.05 | 1.642 | 0.104 |
TG (mmol/L) | 1.11 (0.85, 1.87) | 1.16 (0.80, 1.50) | -0.390 | 0.697 |
HDL-C (mmol/L) | 0.94 (0.73, 1.23) | 1.08±0.33 | -1.047 | 0.295 |
LDL-C (mmol/L) | 2.52±0.74 | 1.08±0.33 | 13.020 | <0.01 |
ApoA (mmol/L) | 1.08 (1.02, 1.24) | 1.18±0.21 | -1.316 | 0.188 |
ApoB (mmol/L) | 0.80 (0.68, 0.96) | 0.73±0.18 | -1.909 | 0.053 |
Lp(a) (mmol/L) | 30.00 (18.03, 79.08) | 31.50 (16.43, 57.50) | -0.657 | 0.511 |
Scr (μmol/L) | 818.65±304.00 | 872.08±271.07 | -0.879 | 0.382 |
eGFR (mL/min/ 1.73m2) | 6.03 (5.37, 8.58) | 6.26 (5.03, 7.82) | -0.130 | 0.897 |
UA (μmol/L) | 528.34±158.53 | 512.43±128.45 | 0.529 | 0.598 |
iPTH (pmol/L) | 21.04 (16.23, 28.44) | 24.33 (17.03, 31.20) | -1.007 | 0.314 |
Ca (mmol/L) | 1.83±0.20 | 1.98±0.29 | -1.927 | 0.057 |
P (mmol/L) | 2.01 (1.64, 2.57) | 2.07±0.53 | -0.016 | 0.987 |
HCT (%) | 0.25±0.54 | 0.25±0.55 | -0.377 | 0.707 |
PT (s) | 11.85 (11.20, 13.10) | 12.00 (11.15, 12.50) | -0.555 | 0.579 |
APTT (s) | 29.95 (27.50, 33.70) | 28.50 (25.30, 31.30) | -2.038 | <0.05 |
FIB (g/L) | 4.30±1.29 | 3.56 (3.19, 4.41) | -1.897 | 0.058 |
D-dimer (μg/mL) | 1.95 (0.57, 3.04) | 0.87 (0.43, 2.80) | -1.436 | 0.151 |
BUN (mmol/L) | 30.02±14.38 | 29.17±8.55 | 0.362 | 0.719 |
表3 狭窄组与非狭窄组患者AVF术前临床资料的比较
Tab.3 Comparison of preoperative clinical data of patients with and without postoperative AVF stenosis
Variables | Stenosis group (n=34) | Non-stenosis group (n=60) | t/Z | P |
---|---|---|---|---|
RBC (1012/L) | 2.87 (2.55, 3.13) | 2.85±0.67 | -0.024 | 0.981 |
WBC (109/L) | 8.06 (5.89, 9.50) | 7.15 (5.75, 9.07) | -1.137 | 0.256 |
Hb (g/L) | 80.83±17.54 | 80.29±17.37 | -0.144 | 0.886 |
PLT (109/L) | 259.24±93.72 | 190.50 (166.25, 239.75) | -2.526 | <0.05 |
NEUT (109/L) | 5.19 (4.14, 7.36) | 5.01 (3.91, 6.55) | -0.952 | 0.341 |
LY (109/L) | 1.27 (0.94, 1.72) | 1.21 (0.81, 1.51) | -1.003 | 0.316 |
NLR | 4.15 (2.91, 5.50) | 3.81 (2.69, 6.31) | -0.362 | 0.717 |
PLR | 212.40±91.31 | 172.60 (117.48, 231.73) | -1.180 | 0.238 |
Alb (g/L) | 37.40 (33.78, 40.50) | 37.65 (34.40, 39.68) | -0.354 | 0.723 |
TC (mmol/L)) | 4.31±1.07 | 3.94±1.05 | 1.642 | 0.104 |
TG (mmol/L) | 1.11 (0.85, 1.87) | 1.16 (0.80, 1.50) | -0.390 | 0.697 |
HDL-C (mmol/L) | 0.94 (0.73, 1.23) | 1.08±0.33 | -1.047 | 0.295 |
LDL-C (mmol/L) | 2.52±0.74 | 1.08±0.33 | 13.020 | <0.01 |
ApoA (mmol/L) | 1.08 (1.02, 1.24) | 1.18±0.21 | -1.316 | 0.188 |
ApoB (mmol/L) | 0.80 (0.68, 0.96) | 0.73±0.18 | -1.909 | 0.053 |
Lp(a) (mmol/L) | 30.00 (18.03, 79.08) | 31.50 (16.43, 57.50) | -0.657 | 0.511 |
Scr (μmol/L) | 818.65±304.00 | 872.08±271.07 | -0.879 | 0.382 |
eGFR (mL/min/ 1.73m2) | 6.03 (5.37, 8.58) | 6.26 (5.03, 7.82) | -0.130 | 0.897 |
UA (μmol/L) | 528.34±158.53 | 512.43±128.45 | 0.529 | 0.598 |
iPTH (pmol/L) | 21.04 (16.23, 28.44) | 24.33 (17.03, 31.20) | -1.007 | 0.314 |
Ca (mmol/L) | 1.83±0.20 | 1.98±0.29 | -1.927 | 0.057 |
P (mmol/L) | 2.01 (1.64, 2.57) | 2.07±0.53 | -0.016 | 0.987 |
HCT (%) | 0.25±0.54 | 0.25±0.55 | -0.377 | 0.707 |
PT (s) | 11.85 (11.20, 13.10) | 12.00 (11.15, 12.50) | -0.555 | 0.579 |
APTT (s) | 29.95 (27.50, 33.70) | 28.50 (25.30, 31.30) | -2.038 | <0.05 |
FIB (g/L) | 4.30±1.29 | 3.56 (3.19, 4.41) | -1.897 | 0.058 |
D-dimer (μg/mL) | 1.95 (0.57, 3.04) | 0.87 (0.43, 2.80) | -1.436 | 0.151 |
BUN (mmol/L) | 30.02±14.38 | 29.17±8.55 | 0.362 | 0.719 |
Variables | r | P |
---|---|---|
Age | 0.148 | 0.155 |
RBC | 0.005 | 0.962 |
WBC | -0.097 | 0.352 |
Hb | 0.104 | 0.319 |
PLT | 0.020 | 0.851 |
NEUT | -0.100 | 0.335 |
LY | 0.080 | 0.445 |
NLR | -0.077 | 0.459 |
PLR | -0.069 | 0.509 |
Alb | -0.040 | 0.699 |
TC | 0.086 | 0.409 |
TG | 0.038 | 0.719 |
HDL-C | 0.096 | 0.355 |
LDL-C | 0.068 | 0.512 |
ApoA | -0.034 | 0.747 |
ApoB | 0.084 | 0.421 |
Lp(a) | -0.031 | 0.770 |
Scr | -0.161 | 0.120 |
eGFR | 0.031 | 0.768 |
BUN | -0.141 | 0.175 |
UA | -0.071 | 0.495 |
iPTH | -0.080 | 0.443 |
Ca | 0.010 | 0.920 |
P | -0.203 | <0.05 |
HCT | 0.057 | 0.587 |
PT | -0.151 | 0.146 |
APTT | -0.073 | 0.482 |
FIB | -0.054 | 0.608 |
D-dimer | 0.192 | 0.063 |
Arterial diameter | -0.178 | 0.086 |
Venous diameter | 0.115 | 0.269 |
表4 血清AGEs与各临床指标的相关性分析
Tab.4 Correlation of serum AGEs with the clinical parameters of the patients
Variables | r | P |
---|---|---|
Age | 0.148 | 0.155 |
RBC | 0.005 | 0.962 |
WBC | -0.097 | 0.352 |
Hb | 0.104 | 0.319 |
PLT | 0.020 | 0.851 |
NEUT | -0.100 | 0.335 |
LY | 0.080 | 0.445 |
NLR | -0.077 | 0.459 |
PLR | -0.069 | 0.509 |
Alb | -0.040 | 0.699 |
TC | 0.086 | 0.409 |
TG | 0.038 | 0.719 |
HDL-C | 0.096 | 0.355 |
LDL-C | 0.068 | 0.512 |
ApoA | -0.034 | 0.747 |
ApoB | 0.084 | 0.421 |
Lp(a) | -0.031 | 0.770 |
Scr | -0.161 | 0.120 |
eGFR | 0.031 | 0.768 |
BUN | -0.141 | 0.175 |
UA | -0.071 | 0.495 |
iPTH | -0.080 | 0.443 |
Ca | 0.010 | 0.920 |
P | -0.203 | <0.05 |
HCT | 0.057 | 0.587 |
PT | -0.151 | 0.146 |
APTT | -0.073 | 0.482 |
FIB | -0.054 | 0.608 |
D-dimer | 0.192 | 0.063 |
Arterial diameter | -0.178 | 0.086 |
Venous diameter | 0.115 | 0.269 |
Variables | B | SE | P | OR | 95% CI | |
---|---|---|---|---|---|---|
Lower limit | Upper limit | |||||
AGEs | 0.220 | 0.065 | 0.001 | 1.247 | 1.097 | 1.416 |
Age | 0.022 | 0.017 | 0.183 | 1.023 | 0.989 | 1.057 |
Gender | -0.169 | 0.434 | 0.697 | 0.844 | 0.360 | 1.979 |
Hypertension | -0.857 | 0.649 | 0.186 | 0.424 | 0.119 | 1.512 |
Hyperlipemia | 0.734 | 0.512 | 0.151 | 2.083 | 0.764 | 5.678 |
Smoking history | -0.372 | 0.582 | 0.523 | 0.690 | 0.220 | 2.158 |
RBC | 0.019 | 0.331 | 0.954 | 1.019 | 0.533 | 1.951 |
WBC | 0.092 | 0.072 | 0.201 | 1.096 | 0.952 | 1.262 |
Hb | -0.002 | 0.012 | 0.885 | 0.998 | 0.974 | 1.023 |
PLT | 0.006 | 0.003 | 0.014* | 1.006 | 1.001 | 1.012 |
NEUT | 0.074 | 0.078 | 0.343 | 1.077 | 0.924 | 1.255 |
LY | 0.301 | 0.354 | 0.396 | 1.351 | 0.675 | 2.707 |
NLR | -0.017 | 0.041 | 0.683 | 0.983 | 0.908 | 1.065 |
PLR | 0.001 | 0.002 | 0.485 | 1.001 | 0.997 | 1.006 |
Alb | -0.029 | 0.041 | 0.480 | 0.971 | 0.895 | 1.053 |
TC | 0.333 | 0.206 | 0.107 | 1.395 | 0.931 | 2.090 |
TG | 0.310 | 0.230 | 0.179 | 1.363 | 0.868 | 2.142 |
HDL-C | -0.236 | 0.621 | 0.703 | 0.789 | 0.234 | 2.666 |
LDL-C | 0.581 | 0.314 | 0.064 | 1.788 | 0.966 | 3.310 |
ApoA | -0.800 | 1.066 | 0.453 | 0.449 | 0.056 | 3.628 |
ApoB | 2.166 | 1.140 | 0.057 | 8.725 | 0.934 | 81.482 |
Lp (a) | 0.006 | 0.005 | 0.193 | 1.006 | 0.997 | 1.015 |
Scr | -0.001 | 0.001 | 0.379 | 0.999 | 0.998 | 1.001 |
eGFR | 0.037 | 0.085 | 0.668 | 1.037 | 0.878 | 1.226 |
BUN | 0.007 | 0.020 | 0.715 | 1.007 | 0.969 | 1.047 |
UA | 0.001 | 0.002 | 0.594 | 1.001 | 0.998 | 1.004 |
iPTH | -0.006 | 0.016 | 0.698 | 0.994 | 0.964 | 1.025 |
Ca | -1.879 | 1.010 | 0.063 | 0.153 | 0.021 | 1.106 |
P | 0.266 | 0.331 | 0.421 | 1.305 | 0.682 | 2.484 |
HCT | -1.529 | 4.016 | 0.703 | 0.217 | 0.000 | 567.825 |
PT | 0.066 | 0.090 | 0.464 | 1.068 | 0.895 | 1.274 |
APTT | 0.055 | 0.030 | 0.071 | 1.056 | 0.995 | 1.121 |
FIB | 0.388 | 0.194 | 0.045* | 1.474 | 1.008 | 2.156 |
D-dimer | 0.081 | 0.117 | 0.488 | 1.085 | 0.862 | 1.364 |
Arterial diameter | 0.290 | 0.461 | 0.530 | 1.336 | 0.541 | 3.300 |
Venous diameter | 0.081 | 0.355 | 0.819 | 1.085 | 0.541 | 2.174 |
表5 预测动静脉内瘘狭窄的单因素Logistic回归分析
Tab.5 Univariate Logistic regression analysis for predicting arteriovenous fistula stenosis
Variables | B | SE | P | OR | 95% CI | |
---|---|---|---|---|---|---|
Lower limit | Upper limit | |||||
AGEs | 0.220 | 0.065 | 0.001 | 1.247 | 1.097 | 1.416 |
Age | 0.022 | 0.017 | 0.183 | 1.023 | 0.989 | 1.057 |
Gender | -0.169 | 0.434 | 0.697 | 0.844 | 0.360 | 1.979 |
Hypertension | -0.857 | 0.649 | 0.186 | 0.424 | 0.119 | 1.512 |
Hyperlipemia | 0.734 | 0.512 | 0.151 | 2.083 | 0.764 | 5.678 |
Smoking history | -0.372 | 0.582 | 0.523 | 0.690 | 0.220 | 2.158 |
RBC | 0.019 | 0.331 | 0.954 | 1.019 | 0.533 | 1.951 |
WBC | 0.092 | 0.072 | 0.201 | 1.096 | 0.952 | 1.262 |
Hb | -0.002 | 0.012 | 0.885 | 0.998 | 0.974 | 1.023 |
PLT | 0.006 | 0.003 | 0.014* | 1.006 | 1.001 | 1.012 |
NEUT | 0.074 | 0.078 | 0.343 | 1.077 | 0.924 | 1.255 |
LY | 0.301 | 0.354 | 0.396 | 1.351 | 0.675 | 2.707 |
NLR | -0.017 | 0.041 | 0.683 | 0.983 | 0.908 | 1.065 |
PLR | 0.001 | 0.002 | 0.485 | 1.001 | 0.997 | 1.006 |
Alb | -0.029 | 0.041 | 0.480 | 0.971 | 0.895 | 1.053 |
TC | 0.333 | 0.206 | 0.107 | 1.395 | 0.931 | 2.090 |
TG | 0.310 | 0.230 | 0.179 | 1.363 | 0.868 | 2.142 |
HDL-C | -0.236 | 0.621 | 0.703 | 0.789 | 0.234 | 2.666 |
LDL-C | 0.581 | 0.314 | 0.064 | 1.788 | 0.966 | 3.310 |
ApoA | -0.800 | 1.066 | 0.453 | 0.449 | 0.056 | 3.628 |
ApoB | 2.166 | 1.140 | 0.057 | 8.725 | 0.934 | 81.482 |
Lp (a) | 0.006 | 0.005 | 0.193 | 1.006 | 0.997 | 1.015 |
Scr | -0.001 | 0.001 | 0.379 | 0.999 | 0.998 | 1.001 |
eGFR | 0.037 | 0.085 | 0.668 | 1.037 | 0.878 | 1.226 |
BUN | 0.007 | 0.020 | 0.715 | 1.007 | 0.969 | 1.047 |
UA | 0.001 | 0.002 | 0.594 | 1.001 | 0.998 | 1.004 |
iPTH | -0.006 | 0.016 | 0.698 | 0.994 | 0.964 | 1.025 |
Ca | -1.879 | 1.010 | 0.063 | 0.153 | 0.021 | 1.106 |
P | 0.266 | 0.331 | 0.421 | 1.305 | 0.682 | 2.484 |
HCT | -1.529 | 4.016 | 0.703 | 0.217 | 0.000 | 567.825 |
PT | 0.066 | 0.090 | 0.464 | 1.068 | 0.895 | 1.274 |
APTT | 0.055 | 0.030 | 0.071 | 1.056 | 0.995 | 1.121 |
FIB | 0.388 | 0.194 | 0.045* | 1.474 | 1.008 | 2.156 |
D-dimer | 0.081 | 0.117 | 0.488 | 1.085 | 0.862 | 1.364 |
Arterial diameter | 0.290 | 0.461 | 0.530 | 1.336 | 0.541 | 3.300 |
Venous diameter | 0.081 | 0.355 | 0.819 | 1.085 | 0.541 | 2.174 |
Variables | B | SE | P | OR | 95% CI | |
---|---|---|---|---|---|---|
Lower limit | Upper limit | |||||
AGEs | 0.224 | 0.068 | 0.0009 | 1.251 | 1.096 | 1.423 |
PLT | 0.005 | 0.003 | 0.112 | 1.005 | 0.999 | 1.011 |
FIB | 0.221 | 0.236 | 0.347 | 1.248 | 0.786 | 1.980 |
表6 预测动静脉内瘘狭窄的多因素Logistic回归分析
Tab.6 Multivariate Logistic regression analysis of the factors for predicting arteriovenous fistula stenosis
Variables | B | SE | P | OR | 95% CI | |
---|---|---|---|---|---|---|
Lower limit | Upper limit | |||||
AGEs | 0.224 | 0.068 | 0.0009 | 1.251 | 1.096 | 1.423 |
PLT | 0.005 | 0.003 | 0.112 | 1.005 | 0.999 | 1.011 |
FIB | 0.221 | 0.236 | 0.347 | 1.248 | 0.786 | 1.980 |
[1] | Voto C, Panetta T. Salvage of suboptimal or occluded arteriovenous fistulas using a 4 French system from the radial artery for initial balloon angioplasty maturations[J]. Cureus, 2021, 13(2): e13446. doi:10.7759/cureus.13446 |
[2] | 金其庄, 王玉柱, 叶朝阳, 等. 中国血液透析用血管通路专家共识(第2版)[J]. 中国血液净化, 2019, 18(6): 365-81. |
[3] | Wen MW, Li Z, Li J, et al. Risk factors for primary arteriovenous fistula dysfunction in hemodialysis patients: a retrospective survival analysis in multiple medical centers[J]. Blood Purif, 2019, 48(3): 276-82. doi:10.1159/000500045 |
[4] | Roetker NS, Guo HF, Ramey DR, et al. Hemodialysis access type and access patency loss: an observational cohort study[J]. Kidney Med, 2022, 5(1): 100567. doi:10.1016/j.xkme.2022.100567 |
[5] | Ibrahim Eissa HA, Zaida N, Abu-Gruidah H, et al. Percutaneous transluminal angioplasty as a treatment of stenosis of arteriovenous fistula for hemodialysis[J]. Menoufia Med J, 2021, 34(2): 696. doi:10.4103/mmj.mmj_364_20 |
[6] | Arshi B, Chen JL, Ikram MA, et al. Advanced glycation end-products, cardiac function and heart failure in the general popul-ation: The Rotterdam Study[J]. Diabetologia, 2023, 66(3): 472-81. doi:10.1007/s00125-022-05821-3 |
[7] | Kato S, Sugawa H, Tabe K, et al. Rapid pretreatment for multi-sample analysis of advanced glycation end products and their role in nephropathy[J]. J Clin Biochem Nutr, 2022, 70(3): 256-61. doi:10.3164/jcbn.21-175 |
[8] | Du CP, Whiddett RO, Buckle I, et al. Advanced glycation end products and inflammation in type 1 diabetes development[J]. Cells, 2022, 11(21): 3503. doi:10.3390/cells11213503 |
[9] | Khanam A, Ahmad S, Husain A. A perspective on the impact of advanced glycation end products in the progression of diabetic nephropathy[J]. Curr Protein Pept Sci, 2023, 24(1): 2-6. doi:10.2174/1389203724666221108120715 |
[10] | Ji XL, Yin M, Deng C, et al. Hemoglobin glycation index among adults with type 1 diabetes: Association with double diabetes features[J]. World J Diabetes, 2025, 16(4): 100917. doi:10.4239/wjd.v16.i4.100917 |
[11] | Groenen AG, Halmos B, van Zeventer IA, et al. Skin autofluorescence, a measure for accumulation of advanced glycation end products, positively associates with blood neutrophil and monocyte counts in the general population, and particularly in men with prediabetes[J]. Atherosclerosis, 2024, 395: 117609. doi:10.1016/j.atherosclerosis.2024.117609 |
[12] | Xue LP, Zhang Y, Zhang Q. The relationship between advanced glycation end products, metabolic metrics, HbA1c, and diabetic nephropathy[J]. Front Endocrinol (Lausanne), 2025, 16: 1468737. doi:10.3389/fendo.2025.1468737 |
[13] | Parwani K, Mandal P. Role of advanced glycation end products and insulin resistance in diabetic nephropathy[J]. Arch Physiol Biochem, 2023, 129(1): 95-107. doi:10.1080/13813455.2020.1797106 |
[14] | Diallo AM, Jaisson S, Barriquand R, et al. Association between the tissue and circulating advanced glycation end-products and the micro- and macrovascular complications in type 1 diabetes: the DIABAGE study[J]. Diabetes Ther, 2022, 13(8): 1531-46. doi:10.1007/s13300-022-01285-1 |
[15] | Majchrzak C, Cougnard-Gregoire A, Le-Goff M, et al. Skin autofluorescence of Advanced Glycation End-products and mortality in older adults: The roles of chronic kidney disease and diabetes[J]. Nutr Metab Cardiovasc Dis, 2022, 32(11): 2526-33. doi:10.1016/j.numecd.2022.08.009 |
[16] | Lim K, Kalim S. The role of nonenzymatic post-translational protein modifications in uremic vascular calcification[J]. Adv Chronic Kidney Dis, 2019, 26(6): 427-36. doi:10.1053/j.ackd.2019.10.001 |
[17] | Steenbeke M, Speeckaert R, Desmedt S, et al. The role of advanced glycation end products and its soluble receptor in kidney diseases[J]. Int J Mol Sci, 2022, 23(7): 3439. doi:10.3390/ijms23073439 |
[18] | Gutierrez-Mariscal FM, Lopez-Moreno A, Torres-Peña JD, et al. Modulation of circulating levels of advanced glycation end products and its impact on intima-media thickness of both common carotid arteries: CORDIOPREV randomised controlled trial[J]. Cardiovasc Diabetol, 2024, 23(1): 361. doi:10.1186/s12933-024-02451-4 |
[19] | 中国超声医学工程学会颅脑及颈部血管超声专业委员会, 国家卫健委脑卒中防治工程专家委员会血管超声专业委员会, 中国超声医学工程学会浅表器官及外周血管超声专业委员会. 腹部及四肢动脉超声若干常见临床问题专家共识[J].中国超声医学杂志, 2020,36(12):1057-66. |
[20] | Zhang LX, Zhao MH, Zuo L, et al. China kidney disease network (CK-NET) 2015 annual data report[J]. Kidney Int Suppl (2011), 2019, 9(1): e1-e81. |
[21] | Fuentes NES, Blanco JR, Garcia GQ, et al. A prospective study of factors associated with successful maturation of arteriovenous fistulas for hemodialysis[J]. J Ultrason, 2024, 24(98): 1-7. doi:10.15557/jou.2024.0030 |
[22] | Vo AT, Nguyen QNH, Le T. Effects of diabetes on the development of arteriovenous fistula during the first 6 weeks[J]. J Vasc Ultrasound, 2024, 48(4): 213-20. doi:10.1177/15443167241298060 |
[23] | Zhao B, Wang H, Wang YZ, et al. Type 2 diabetes increase the risk of arteriovenous fistula non-maturation, mediated by postoperative vascular hemodynamics[J]. Int Urol Nephrol, 2024, 56(12): 3887-94. doi:10.1007/s11255-024-04150-1 |
[24] | Wongchadakul P, Lohasammakul S, Rattanadecho P. Comparative analysis of RADAR vs. conventional techniques for AVF maturation in patients with blood viscosity and vessel elasticity-related diseases through fluid-structure interaction modeling: Anemia, hypertension, and diabetes[J]. PLoS One, 2024, 19(1): e0296631. doi:10.1371/journal.pone.0296631 |
[25] | Maphumulo SC, Pretorius E. Role of circulating microparticles in type 2 diabetes mellitus: implications for pathological clotting[J]. Semin Thromb Hemost, 2022, 48(2): 188-205. doi:10.1055/s-0041-1740150 |
[26] | Neves M, Outerelo C, Pereira M, et al. Predictive factors of recurrent endovascular intervention for cephalic arch stenosis after percutan-eous transluminal angioplasty[J]. J Vasc Surg, 2018, 68(3): 836-42. doi:10.1016/j.jvs.2017.12.055 |
[27] | Kato S, Matsumura T, Sugawa H, et al. Correlation between serum advanced glycation end-products and vascular complications in patient with type 2 diabetes[J]. Sci Rep, 2024, 14(1): 18722. doi:10.1038/s41598-024-69822-5 |
[28] | Pearce C, Islam N, Bryce R, et al. Advanced glycation end products: receptors for advanced glycation end products axis in coronary stent restenosis: a prospective study[J]. Int J Angiol, 2018, 27(4): 213-22. doi:10.1055/s-0038-1676383 |
[29] | Azamian Y, Abdollahzad H, Rezaeian S, et al. The effect of synbiotic supplementation on plasma levels of advanced glycation end products and cardiovascular risk factors in hemodialysis patients: a double-blind clinical trial[J]. Food Sci Nutr, 2024, 12(9): 6864-72. doi:10.1002/fsn3.4338 |
[30] | Khanam A, Alouffi S, Alyahyawi AR, et al. Generation of autoantibodies against glycated fibrinogen: role in diabetic nephropathy and retinopathy[J]. Anal Biochem, 2024, 685: 115393. doi:10.1016/j.ab.2023.115393 |
[31] | Klyosova E, Azarova I, Polonikov A. A polymorphism in the gene encoding heat shock factor 1 (HSF1) increases the risk of type 2 diabetes: a pilot study supports a role for impaired protein folding in disease pathogenesis[J]. Life (Basel), 2022, 12(11): 1936. doi:10.3390/life12111936 |
[32] | Dincer N, Dagel T, Afsar B, et al. The effect of chronic kidney disease on lipid metabolism[J]. Int Urol Nephrol, 2019, 51(2): 265-77. doi:10.1007/s11255-018-2047-y |
[33] | Yilmaz H, Bozkurt A, Cakmak M, et al. Relationship between late arteriovenous fistula (AVF) stenosis and neutrophil-lymphocyte ratio (NLR) in chronic hemodialysis patients[J]. Ren Fail, 2014, 36(9): 1390-4. doi:10.3109/0886022x.2014.945183 |
[34] | See YP, Cho Y, Pascoe EM, et al. Predictors of arteriovenous fistula failure: a Post hoc analysis of the FAVOURED study[J]. Kidney360, 2020, 1(11): 1259-69. doi:10.34067/kid.0002732020 |
[35] | Yang X, Zeng JX, Xie KJ, et al. Advanced glycation end product-modified low-density lipoprotein promotes pro-osteogenic reprogramming via RAGE/NF-κB pathway and exaggerates aortic valve calcification in hamsters[J]. Mol Med, 2024, 30(1): 76. doi:10.1186/s10020-024-00833-8 |
[36] | Chen X, Zhang JW. COL3A1 induces ischemic heart failure by activating AGE/RAGE pathway[J]. Signa vitae,2022,18(6):45-52. |
[37] | Chen JJ, Peng H, Chen CJ, et al. NAG-1/GDF15 inhibits diabetic nephropathy via inhibiting AGE/RAGE-mediated inflammation signaling pathways in C57BL/6 mice and HK-2 cells[J]. Life Sci, 2022, 311(Pt A): 121142. doi:10.1016/j.lfs.2022.121142 |
[38] | Burr SD, Dorroh CC, Stewart JA. Rap1a activity elevated the impact of endogenous AGEs in diabetic collagen to stimulate increased myofibroblast transition and oxidative stress[J]. Int J Mol Sci, 2022, 23(9): 4480. doi:10.3390/ijms23094480 |
[39] | Min F, Li ZR, Li YL, et al. The contribution of adiponectin to diabetic retinopathy progression: Association with the AGEs-RAGE pathway[J]. Heliyon, 2024, 10(17): e36111. doi:10.1016/j.heliyon.2024.e36111 |
[40] | Stephen SB, Kulanthaivel L, Subbaraj GK. RAGE gene polymorphism with microvascular complications in diabetic patients: a meta-analysis[J]. Russ J Genet, 2025, 61(4): 473-84. doi:10.1134/s1022795424701874 |
[41] | Yamazaki Y, Wake H, Nishinaka T, et al. Involvement of multiple scavenger receptors in advanced glycation end product-induced vessel tube formation in endothelial cells[J]. Exp Cell Res, 2021, 408(1): 112857. doi:10.1016/j.yexcr.2021.112857 |
[42] | Rizzi A, Petrucci G, Sacco M, et al. Effects of low-dose rivaroxaban combined with low-dose aspirin versus low-dose aspirin alone on in vivo platelet activation, endothelial function and inflammation in type 2 diabetes patients with stable atherosclerotic disease: the RivAsa randomized, crossover study[J]. Diabetes Res Clin Pract, 2025, 224: 112244. doi:10.1016/j.diabres.2025.112244 |
[43] | Arriagada-Petersen C, Fernandez P, Gomez M, et al. Effect of advanced glycation end products on platelet activation and aggregation: a comparative study of the role of glyoxal and methylglyoxal[J]. Platelets, 2021, 32(4): 507-15. doi:10.1080/09537104.2020.1767770 |
[44] | Hsu YH, Yen YC, Lin YC, et al. Correction: antiplatelet agents maintain arteriovenous fistula and graft function in patients receiving hemodialysis: a nationwide case-control study[J]. PLoS One, 2019, 14(4): e0215546. doi:10.1371/journal.pone.0215546 |
[45] | Jahan H, Tufail P, Shamim S, et al. 1, 2, 4-Triazine derivatives as agents for the prevention of AGE-RAGE-mediated inflammatory cascade in THP-1 monocytes: an approach to prevent inflammation-induced late diabetic complications[J]. Int Immunopharmacol, 2024, 142(Pt B): 113145. doi:10.1016/j.intimp.2024.113145 |
[46] | Molinuevo MS, Cortizo AM, Sedlinsky C. Effects of advanced glycation end-products, diabetes and metformin on the osteoblastic transdifferentiation capacity of vascular smooth muscle cells: in vivo and in vitro studies[J]. J Diabetes Complications, 2023, 37(11): 108626. doi:10.1016/j.jdiacomp.2023.108626 |
[1] | 丁晓倩,胡 赟,罗 丹,唐 宇,李彩玉,郑雷蕾. 晚期糖基化终末产物对破骨细胞分化不同阶段的影响[J]. 南方医科大学学报, 2020, 40(04): 573-579. |
[2] | 袁思捷,谢海庭,李忠丽. 超敏反应蛋白、纤维蛋白原和D-二聚体在结缔组织病相关间质性肺炎中的临床意义[J]. 南方医科大学学报, 2017, 37(03): 415-. |
[3] | 李孟姣,葛淼,王聪霞,岑敏仪,姜吉琳,何进伟,林倩怡,刘鑫. 基于神经网络的血浆纤维蛋白原参考值与地理因素的关系[J]. 南方医科大学学报, 2016, 36(08): 1062-. |
[4] | 董嘉尧,朱桥华,罗美华,周成宇,黄维,于新发. 急性下肢深静脉血栓经导管溶栓过程中凝血纤溶指标的临床意义[J]. 南方医科大学学报, 2016, 36(04): 588-. |
[5] | 刘宗瑞,赵豪,陈艳荣,唐冬冬,牛红心. 他汀类药物治疗对延缓慢性肾脏病进展的荟萃分析[J]. 南方医科大学学报, 2016, 36(04): 445-. |
[6] | 庞若宇,关美萍,郑宗基,薛耀明. 二甲双胍对糖基化终末产物诱导的成纤维细胞凋亡及相关蛋白caspase-3、Bax及Bcl-2表达的影响[J]. 南方医科大学学报, 2015, 35(06): 898-. |
[7] | 周忠信,潘春球. 终末期肾病自体动静脉内瘘术后狭窄的手术修复策略[J]. 南方医科大学学报, 2013, 33(10): 1538-. |
[8] | 孔卫娜,张佳,高维娟,刘清涛,周利明,柴锡庆. β淀粉样蛋白通过升高ROS水平上调晚期糖基化终末产物受体的表达[J]. 南方医科大学学报, 2013, 33(08): 1132-. |
[9] | 李炬聪,宋先璐,陆斌,李煜生,洪英洽,邓鹏,赵楚标,罗海华,赵善超,姜勇. 晚期糖基化终末产物受体胞外段不同功能段在前列腺癌细胞中的表达与定位[J]. 南方医科大学学报, 2012, 32(04): 507-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||