南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (1): 206-212.doi: 10.12122/j.issn.1673-4254.2025.01.24
• • 上一篇
收稿日期:
2024-12-24
出版日期:
2025-01-20
发布日期:
2025-01-20
通讯作者:
刘叔文
E-mail:mhuang@bebettermed.com;caizheng2002@sina.com;liusw@smu.edu.cn
作者简介:
黄慕齐,在读硕士研究生,E-mail: mhuang@bebettermed.com基金资助:
Muqi HUANG1(), Zheng CAI1(
), Shuwen LIU1,2(
)
Received:
2024-12-24
Online:
2025-01-20
Published:
2025-01-20
Contact:
Shuwen LIU
E-mail:mhuang@bebettermed.com;caizheng2002@sina.com;liusw@smu.edu.cn
Supported by:
摘要:
随着药物设计和制剂技术的进步,长效药物的开发已成为精准医疗与慢病管理的重要研究方向。此类药物通过延长体内有效浓度的维持时间,减少用药频率达到改善患者依从性与生活质量的目的。小分子药物、单克隆抗体及核酸药物在实现长效化方面各有难点,特别是后两者因其结构的复杂性,存在更多挑战。本文将对小分子药物、单克隆抗体及核酸药物的长效化设计策略进行综述。
黄慕齐, 蔡铮, 刘叔文. 药物的长效化设计策略[J]. 南方医科大学学报, 2025, 45(1): 206-212.
Muqi HUANG, Zheng CAI, Shuwen LIU. Strategies for long-acting drug design[J]. Journal of Southern Medical University, 2025, 45(1): 206-212.
Drug type | Generic name (trade name) | Sponsor | Indication | Long acting strategy | Plasma half-life | Dosing method | FDA approval date | |
---|---|---|---|---|---|---|---|---|
Small molecule drug | Paliperidone Palmitate (Invega Sustenna) | Janssen Pharmaceuticals Inc | Schizophrenia | Nanocrystals | 25-49 d | qm, im | 2009.7 | |
Paliperidone Palmitate (Invega Trinza) | Janssen Pharmaceuticals Inc | Schizophrenia | Nanocrystals | 84-95 d | q3m,im | 2015.5 | ||
Aripiprazole Lauroxil (Aristada Initio) | Alkermes Inc | Schizophrenia | Nanocrystals | 15-18 d | s, im | 2018.6 | ||
Risperidone (Perseris) | Indivior PLC | Schizophrenia | ATRIGEL delivery system | 9-11 d | qm, sc | 2018.7 | ||
Baloxavir marboxil (Xofluza) | Shionogi | Influenza A and B | Prodrug technique | 80-100 h | s, po | 2018.10 | ||
Cabotegravir/Rilpivirine (Cabenuva) | Viiv Healthcare Co | Treatment of HIV-1 infection | Nanocrystals | Cabotegravir:5.6-11.5w;Rilpivirine:13-28 w | qm or q2m, im | 2021.1 | ||
Paliperidone Palmitate (Invega Hafyera) | Janssen Pharmaceuticals Inc | Schizophrenia | Nanocrystals | 148-159 d | q6m,im | 2021.8 | ||
Cabotegravir (Apretude) | Viiv Healthcare Co | Prophylaxis for HIV-1 | Nanocrystals | 25-54 d | q2m, im | 2021.12 | ||
Lenacapavir (Sunlenca) | Gilead Sciences | Treatment/Prevention of HIV-1 infection | 10 Fluoride substituted, PEG solvent, subcutaneous extended-release | 8-12 w | q6m, sc | 2022.12 | ||
Risperidone Microspheres for Injection(II) (Rykindo) | Luye Pharma Group | Acute and chronic schizophrenia and bipolar disorder type I | Microsphere technique | 3-6 d, stable release:4-5 w | q2w, im | 2023.1 | ||
Monoclonal antibody | Ravulizumab (Ultomiris) | Alexion | Paroxysmal nocturnal hemoglobinuria | Increased extent of terminal sialylation on N-glycosylation Fc: LS modification, two histidine substitutions in complementarity determining region | 50 d | q8w, iv | 2018.12 | |
Sotrovimab (Xevudy) | GSK/Vir Biotechnology | COVID-19 treatment | Fc: LS modification | 61 d | s, im | 2021.5 | ||
Tixagevimab/Cilgavimab (Evusheld) | AstraZeneca | Prophylaxis for COVID-19 | Fc: TM and YTE modification | Tixagevimab:87.9 d,Cilgavimab:77.9-92.0 d | s, im | 2022.12 | ||
Nirsevimab (Beyfortus) | AstraZeneca/Sanofi | RSV induced lower respiratory tract infection | Fc: YTE modification | 63-73 d | s, im | 2023.7 | ||
Nucleic acid drug | Nusinersen (Spinraza) | Ionis/Biogen | Spinal muscular atrophy(SMA) | PS, 2′⁃MOE | plasma:63-87 d,cerebrospinal fluid:135-177 d | q4w, it | 2016.12 | |
Patisiran (Onpattro) | Alnylam | The polyneuropathy of hereditary transthyretin-mediated amyloidosis in adults | 2′⁃OH/2′⁃OMe/2′⁃H; LNP delivery | 2-4 d, 12-20 d(elimination) | q3w, iv | 2018.8 | ||
Givosiran (Givlaari) | Alnylam | Acute hepatic porphyria | ESC, PS, 2′⁃OMe/2′⁃F; GalNAc delivery | 6 h, CL= 0.50 L·h-1·kg-1 | qm, sc | 2019.11 | ||
Lumasiran (Oxlumo) | Alnylam | Primary hyperoxaluria type 1(PH1) | ESC, PS, 2′⁃OMe/2′⁃F; GalNAc delivery | 5.2 h, CL= 0.38 L·h-1·kg-1, liver: not detected | q3m, sc | 2020.11 | ||
Inclisiran (Leqvio) | Novartis | Heterozygous familial hypercholesterolemia or atherosclerotic cardiovascular disease | Advanced ESC, PS, 2′-OMe/2′-F; GalNAc delivery | 9 h, liver: 80-90 d | q6m, sc | 2020.12 | ||
Vutrisiran (Amvuttra) | Alnylam | The polyneuropathy of hereditary transthyretin-mediated amyloidosis in adults | ESC, PS, 2′-OMe/2′-F; GalNAc delivery | 5.2 h, CL= 0.30 L·h-1·kg-1, liver: not detected | q3m, sc | 2022.6 | ||
Tofersen (Qalsody) | Ionis/Biogen | Amyotrophic lateral sclerosis with SOD1 gene mutation | PS, 2′-MOE | Cerebrospinal fluid:4 w | q4w, it | 2023.4 | ||
Nedosiran (Rivfloza) | Novo Nordisk | Primary hyperoxaluria type 1(PH1) | PS, 2′-OMe/2′-F; GalXc technique | 15 h, CL=0.08 L·h-1·kg-1 liver: not detected | qm, sc | 2023.9 | ||
Eplontersen (Wainua) | Ionis/AstraZeneca | The polyneuropathy of hereditary transthyretin-mediated amyloidosis in adults | PS/PO, 2′-MOE; GalNAc delivery | 3 w | qm, sc | 2023.12 |
表1 近10年来FDA批准上市的长效药物
Tab.1 Long-acting drugs approved by FDA for marketing in the past 10 years
Drug type | Generic name (trade name) | Sponsor | Indication | Long acting strategy | Plasma half-life | Dosing method | FDA approval date | |
---|---|---|---|---|---|---|---|---|
Small molecule drug | Paliperidone Palmitate (Invega Sustenna) | Janssen Pharmaceuticals Inc | Schizophrenia | Nanocrystals | 25-49 d | qm, im | 2009.7 | |
Paliperidone Palmitate (Invega Trinza) | Janssen Pharmaceuticals Inc | Schizophrenia | Nanocrystals | 84-95 d | q3m,im | 2015.5 | ||
Aripiprazole Lauroxil (Aristada Initio) | Alkermes Inc | Schizophrenia | Nanocrystals | 15-18 d | s, im | 2018.6 | ||
Risperidone (Perseris) | Indivior PLC | Schizophrenia | ATRIGEL delivery system | 9-11 d | qm, sc | 2018.7 | ||
Baloxavir marboxil (Xofluza) | Shionogi | Influenza A and B | Prodrug technique | 80-100 h | s, po | 2018.10 | ||
Cabotegravir/Rilpivirine (Cabenuva) | Viiv Healthcare Co | Treatment of HIV-1 infection | Nanocrystals | Cabotegravir:5.6-11.5w;Rilpivirine:13-28 w | qm or q2m, im | 2021.1 | ||
Paliperidone Palmitate (Invega Hafyera) | Janssen Pharmaceuticals Inc | Schizophrenia | Nanocrystals | 148-159 d | q6m,im | 2021.8 | ||
Cabotegravir (Apretude) | Viiv Healthcare Co | Prophylaxis for HIV-1 | Nanocrystals | 25-54 d | q2m, im | 2021.12 | ||
Lenacapavir (Sunlenca) | Gilead Sciences | Treatment/Prevention of HIV-1 infection | 10 Fluoride substituted, PEG solvent, subcutaneous extended-release | 8-12 w | q6m, sc | 2022.12 | ||
Risperidone Microspheres for Injection(II) (Rykindo) | Luye Pharma Group | Acute and chronic schizophrenia and bipolar disorder type I | Microsphere technique | 3-6 d, stable release:4-5 w | q2w, im | 2023.1 | ||
Monoclonal antibody | Ravulizumab (Ultomiris) | Alexion | Paroxysmal nocturnal hemoglobinuria | Increased extent of terminal sialylation on N-glycosylation Fc: LS modification, two histidine substitutions in complementarity determining region | 50 d | q8w, iv | 2018.12 | |
Sotrovimab (Xevudy) | GSK/Vir Biotechnology | COVID-19 treatment | Fc: LS modification | 61 d | s, im | 2021.5 | ||
Tixagevimab/Cilgavimab (Evusheld) | AstraZeneca | Prophylaxis for COVID-19 | Fc: TM and YTE modification | Tixagevimab:87.9 d,Cilgavimab:77.9-92.0 d | s, im | 2022.12 | ||
Nirsevimab (Beyfortus) | AstraZeneca/Sanofi | RSV induced lower respiratory tract infection | Fc: YTE modification | 63-73 d | s, im | 2023.7 | ||
Nucleic acid drug | Nusinersen (Spinraza) | Ionis/Biogen | Spinal muscular atrophy(SMA) | PS, 2′⁃MOE | plasma:63-87 d,cerebrospinal fluid:135-177 d | q4w, it | 2016.12 | |
Patisiran (Onpattro) | Alnylam | The polyneuropathy of hereditary transthyretin-mediated amyloidosis in adults | 2′⁃OH/2′⁃OMe/2′⁃H; LNP delivery | 2-4 d, 12-20 d(elimination) | q3w, iv | 2018.8 | ||
Givosiran (Givlaari) | Alnylam | Acute hepatic porphyria | ESC, PS, 2′⁃OMe/2′⁃F; GalNAc delivery | 6 h, CL= 0.50 L·h-1·kg-1 | qm, sc | 2019.11 | ||
Lumasiran (Oxlumo) | Alnylam | Primary hyperoxaluria type 1(PH1) | ESC, PS, 2′⁃OMe/2′⁃F; GalNAc delivery | 5.2 h, CL= 0.38 L·h-1·kg-1, liver: not detected | q3m, sc | 2020.11 | ||
Inclisiran (Leqvio) | Novartis | Heterozygous familial hypercholesterolemia or atherosclerotic cardiovascular disease | Advanced ESC, PS, 2′-OMe/2′-F; GalNAc delivery | 9 h, liver: 80-90 d | q6m, sc | 2020.12 | ||
Vutrisiran (Amvuttra) | Alnylam | The polyneuropathy of hereditary transthyretin-mediated amyloidosis in adults | ESC, PS, 2′-OMe/2′-F; GalNAc delivery | 5.2 h, CL= 0.30 L·h-1·kg-1, liver: not detected | q3m, sc | 2022.6 | ||
Tofersen (Qalsody) | Ionis/Biogen | Amyotrophic lateral sclerosis with SOD1 gene mutation | PS, 2′-MOE | Cerebrospinal fluid:4 w | q4w, it | 2023.4 | ||
Nedosiran (Rivfloza) | Novo Nordisk | Primary hyperoxaluria type 1(PH1) | PS, 2′-OMe/2′-F; GalXc technique | 15 h, CL=0.08 L·h-1·kg-1 liver: not detected | qm, sc | 2023.9 | ||
Eplontersen (Wainua) | Ionis/AstraZeneca | The polyneuropathy of hereditary transthyretin-mediated amyloidosis in adults | PS/PO, 2′-MOE; GalNAc delivery | 3 w | qm, sc | 2023.12 |
1 | Fralish Z, Chen A, Khan S, et al. The landscape of small-molecule prodrugs[J]. Nat Rev Drug Discov, 2024, 23(5): 365-80. |
2 | 张鸿燕, 舒 良, 周东丰, 等. 氟哌啶醇的药代动力学研究[J]. 中华神经精神科杂志, 1995, 28(6): 325-8. |
3 | Kalhapure RS, Palekar S, Patel K, et al. Nanocrystals for controlled delivery: state of the art and approved drug products[J]. Expert Opin Drug Deliv, 2022, 19(10): 1303-16. |
4 | Peters L, Dyer M, Schroeder E, et al. Invega hafyera (paliperidone palmitate): extended-release injectable suspension for patients with schizophrenia[J]. J Pharm Technol, 2023, 39(2): 88-94. |
5 | Landovitz RJ, Li SE, Eron JJ Jr, et al. Tail-phase safety, tolerability, and pharmacokinetics of long-acting injectable cabotegravir in HIV-uninfected adults: a secondary analysis of the HPTN 077 trial[J]. Lancet HIV, 2020, 7(7): e472-e481. |
6 | Zeuli JD, Rivera CG, Smith BL, et al. Cabotegravir: a novel HIV integrase inhibitor combined with rilpivirine as the first long-acting injectable program for the treatment of HIV infection[J]. Drugs Today, 2022, 58(12): 555-76. |
7 | Hodge D, Back DJ, Gibbons S, et al. Pharmacokinetics and drug-drug interactions of long-acting intramuscular cabotegravir and rilpivirine[J]. Clin Pharmacokinet, 2021, 60(7): 835-53. |
8 | Su Y, Zhang BL, Sun RW, et al. PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application[J]. Drug Deliv, 2021, 28(1): 1397-418. |
9 | Markowicz-Piasecka M, Kubisiak M, Asendrych-Wicik K, et al. Long-acting injectable antipsychotics-a review on formulation and in vitro dissolution[J]. Pharmaceutics, 2023, 16(1): 28. |
10 | Correll CU, Kim E, Sliwa JK, et al. Pharmacokinetic characteristics of long-acting injectable antipsychotics for schizophrenia: an overview[J]. CNS Drugs, 2021, 35(1): 39-59. |
11 | 中华医学会精神医学分会精神分裂症协作组. 注射用利培酮微球临床应用专家共识[J]. 中国心理卫生杂志, 2023, 37(8): 641-7. |
12 | Weber E, Subramanian R, Rowe W, et al. Pharmacokinetics, disposition, and biotransformation of[14C]lenacapavir, a novel, first-in-class, selective inhibitor of HIV-1 capsid function, in healthy participants following a single intravenous infusion[J]. Clin Pharmacokinet, 2024, 63(2): 241-53. |
13 | Di Perri G. Pharmacological outlook of Lenacapavir: a novel first-in-class Long-Acting HIV-1 Capsid Inhibitor[J]. Infez Med, 2023, 31(4): 495-9. |
14 | Kelley CF, Acevedo-Quiñones M, Agwu AL, et al. Twice-yearly lenacapavir for HIV prevention in men and gender-diverse persons[J]. N Engl J Med, 2024,[Online ahead of print]. |
15 | Wang H, Song MD, Xu JQ, et al. Long-acting strategies for antibody drugs: structural modification, controlling release, and changing the administration route[J]. Eur J Drug Metab Pharmacokinet, 2024, 49(3): 295-316. |
16 | Bas M, Terrier A, Jacque E, et al. Fc sialylation prolongs serum half-life of therapeutic antibodies[J]. J Immunol, 2019, 202(5): 1582-94. |
17 | Boune S, Hu PS, Epstein AL, et al. Principles of N-linked glycosylation variations of IgG-based therapeutics: pharmacokinetic and functional considerations[J]. Antibodies, 2020, 9(2): 22. |
18 | Reichard EE, Nanaware-Kharade N, Gonzalez GA 3rd, et al. PEGylation of a high-affinity anti-(+)methamphetamine single chain antibody fragment extends functional half-life by reducing clearance[J]. Pharm Res, 2016, 33(12): 2954-66. |
19 | Shi YJ, Lu A, Wang XY, et al. A review of existing strategies for designing long-acting parenteral formulations: focus on underlying mechanisms, and future perspectives[J]. Acta Pharm Sin B, 2021, 11(8): 2396-415. |
20 | Lee CH, Kang TH, Godon O, et al. An engineered human Fc domain that behaves like a pH-toggle switch for ultra-long circulation persistence[J]. Nat Commun, 2019, 10(1): 5031. |
21 | Gupta A, Gonzalez-Rojas Y, Juarez E, et al. Early treatment for covid-19 with SARS-CoV-2 neutralizing antibody sotrovimab[J]. N Engl J Med, 2021, 385(21): 1941-50. |
22 | Rondeau E, Scully M, Ariceta G, et al. The long-acting C5 inhibitor, Ravulizumab, is effective and safe in adult patients with atypical hemolytic uremic syndrome naïve to complement inhibitor treatment[J]. Kidney Int, 2020, 97(6): 1287-96. |
23 | McKeage K. Ravulizumab: first global approval[J]. Drugs, 2019, 79(3): 347-52. |
24 | Dall' Acqua WF, Kiener PA, Wu H. Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn)[J]. J Biol Chem, 2006, 281(33): 23514-24. |
25 | Loo YM, McTamney PM, Arends RH, et al. The SARS-CoV-2 monoclonal antibody combination, AZD7442, is protective in nonhuman Primates and has an extended half-life in humans[J]. Sci Transl Med, 2022, 14(635): eabl8124. |
26 | Griffin MP, Yuan Y, Takas T, et al. Single-dose nirsevimab for prevention of RSV in preterm infants[J]. N Engl J Med, 2020, 383(5): 415-25. |
27 | Hammitt LL, Dagan R, Yuan Y, et al. Nirsevimab for prevention of RSV in healthy late-preterm and term infants[J]. N Engl J Med, 2022, 386(9): 837-46. |
28 | Hu CC, Chiu YC, Chaw JR, et al. Thermo-responsive hydrogel as an anti-VEGF drug delivery system to inhibit retinal angiogenesis in Rex rabbits[J]. Technol Health Care, 2019, 27(S1): 153-63. |
29 | Iyer S, Radwan AE, Hafezi-Moghadam A, et al. Long-acting intraocular Delivery strategies for biological therapy of age-related macular degeneration[J]. J Control Release, 2019, 296: 140-9. |
30 | Vollrath M, Engert J, Winter G. Long-term release and stability of pharmaceutical proteins delivered from solid lipid implants[J]. Eur J Pharm Biopharm, 2017, 117: 244-55. |
31 | Crooke ST, Witztum JL, Bennett CF, et al. RNA-targeted therapeutics[J]. Cell Metab, 2018, 27(4): 714-39. |
32 | Yu RZ, Lemonidis KM, Graham MJ, et al. Cross-species comparison of in vivo PK/PD relationships for second-generation antisense oligonucleotides targeting apolipoprotein B-100[J]. Biochem Pharmacol, 2009, 77(5): 910-9. |
33 | Nair JK, Attarwala H, Sehgal A, et al. Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc-siRNA conjugates[J]. Nucleic Acids Res, 2017, 45(19): 10969-77. |
34 | Gosselin NH, Schuck VJA, Barriere O, et al. Translational population-pharmacodynamic modeling of a novel long-acting siRNA therapy, inclisiran, for the treatment of hypercholesterolemia[J]. Clin Pharmacol Ther, 2023, 113(2): 328-38. |
35 | Podbevsek P, Allerson CR, Bhat B, et al. Solution-state structure of a fully alternately 2'-F/2'-OMe modified 42-nt dimeric siRNA construct[J]. Nucleic Acids Res, 2010, 38(20): 7298-307. |
36 | Sheng L, Rigo F, Bennett CF, et al. Comparison of the efficacy of MOE and PMO modifications of systemic antisense oligonuc-leotides in a severe SMA mouse model[J]. Nucleic Acids Res, 2020, 48(6): 2853-65. |
37 | Crooke ST, Baker BF, Crooke RM, et al. Antisense technology: an overview and prospectus[J]. Nat Rev Drug Discov, 2021, 20(6): 427-53. |
38 | Claborn MK, Stevens DL, Walker CK, et al. Nusinersen: a treatment for spinal muscular atrophy[J]. Ann Pharmacother, 2019, 53(1): 61-9. |
39 | Eygeris Y, Gupta M, Kim J, et al. Chemistry of lipid nanoparticles for RNA delivery[J]. Acc Chem Res, 2022, 55(1): 2-12. |
40 | Zhang XP, Goel V, Robbie GJ. Pharmacokinetics of patisiran, the first approved RNA interference therapy in patients with hereditary transthyretin-mediated amyloidosis[J]. J Clin Pharmacol, 2020, 60(5): 573-85. |
41 | Jung HN, Lee SY, Lee S, et al. Lipid nanoparticles for delivery of RNA therapeutics: current status and the role of in vivo imaging[J]. Theranostics, 2022, 12(17): 7509-31. |
42 | Hald Albertsen C, Kulkarni JA, Witzigmann D, et al. The role of lipid components in lipid nanoparticles for vaccines and gene therapy[J]. Adv Drug Deliv Rev, 2022, 188: 114416. |
43 | Brown CR, Gupta S, Qin JE, et al. Investigating the pharmacodynamic durability of GalNAc-siRNA conjugates[J]. Nucleic Acids Res, 2020, 48(21): 11827-44. |
44 | Prakash TP, Graham MJ, Yu JH, et al. Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice[J]. Nucleic Acids Res, 2014, 42(13): 8796-807. |
45 | Yu RZ, Collins JW, Hall S, et al. Population pharmacokinetic-pharmacodynamic modeling of inotersen, an antisense oligonucleotide for treatment of patients with hereditary transthyretin amyloidosis[J]. Nucleic Acid Ther, 2020, 30(3): 153-63. |
46 | Nie TN. Eplontersen: first approval[J]. Drugs, 2024, 84(4): 473-8. |
[1] | 王震,黄文,岑柏宏,魏媛怡,廖路敏,黎国仙,季爱民. siRNA介导的PD-L1 沉默可增强人CD8+T淋巴细胞的体外杀伤作用[J]. 南方医科大学学报, 2018, 38(07): 800-. |
[2] | 李林海,陈丽丹,廖杨,陈建芸,石玉玲. 西尼罗河病毒preM/EⅢ融合蛋白特异性单克隆抗体的制备以及应用分析[J]. 南方医科大学学报, 2012, 32(05): 742-. |
[3] | 石向华,刘小友,孙煦勇,赵明. CD40 阻断剂对大鼠肾移植急性排斥反应的影响[J]. 南方医科大学学报, 2011, 31(12): 2085-. |
[4] | 翁建宇; 杜欣; . MFAC治疗初发难治性CD33~+急性淋巴细胞白血病1例报告[J]. 南方医科大学学报, 2006, 26(12): 1831-1831. |
[5] | 郭杰标; 郭锐; 刘艳华;. 以抗体竞争结合抗原测定单抗亲和力常数的研究[J]. 南方医科大学学报, 2006, 26(07): 1057-1059. |
[6] | 李妍; 宁云山; 洪燕华; 刘宜楚; 罗军; 龙敏; 董文其; 李明;. 抗幽门螺杆菌单克隆抗体的制备与鉴定[J]. 南方医科大学学报, 2006, 26(04): 425-427. |
[7] | 丘立文; 王压娣; 廖志勇; 温坤; 车小燕; . 人冠状病毒SARS-CoV、229E和OC43核衣壳(N)蛋白单克隆抗体的制备及3株人冠状病毒N蛋白的抗原相关性观察[J]. 南方医科大学学报, 2006, 26(03): 290-293. |
[8] | 叶靖; 许乙凯; 刘岘; 吕国士;. 链霉亲合素-DTPA-Gd经腹腔和静脉注射后对荷瘤裸鼠磁共振肿瘤靶向成像的强化效应(英文)[J]. 南方医科大学学报, 2006, 26(02): 139-143. |
[9] | 唐磊1, 朱平1, 罗琛2, 徐湘民2, 富宁1. 抗人ζ珠蛋白链不同表位单克隆抗体的制备和鉴定[J]. 南方医科大学学报, 2005, 25(11): 1394-1397. |
[10] | 郝文波1, 洪艳华1, 孙晓敏1, 宁云山1, 张冬梅2, 潘卫庆2, 李明1. 抗恶性疟原虫EBA-175单克隆抗体的制备与初步鉴定[J]. 南方医科大学学报, 2005, 25(09): 1169-1171. |
[11] | 李琳1, 刘洁2, 朱平2, 徐江平1, 富宁2. 与海洛因有完全交叉反应的抗吗啡单抗的制备[J]. 南方医科大学学报, 2005, 25(07): 833-836. |
[12] | 吴英松1, 雷腊梅2, 李明1. 用乳酸脱氢酶为靶分子的免疫层析技术检测恶性疟原虫[J]. 南方医科大学学报, 2005, 25(07): 761-765. |
[13] | 吴锦雅, 杨培良, 周晓红, 李华, 陈晓光. 应用抗SjP38的单克隆抗体建立血吸虫感染的胶体金免疫层析检测体系[J]. 南方医科大学学报, 2005, 25(05): 538-541. |
[14] | 李妍, 宁云山, 李莉, 彭丹丹, 董文其, 李明. 抗恶性疟原虫谷氨酸脱氢酶单克隆抗体的研制与胶体金免疫层析方法的建立[J]. 南方医科大学学报, 2005, 25(04): 435-438. |
[15] | 王蕾1, 吴英松1, 汤永平2, 李明1. 应用时间分辨荧光免疫分析技术检测SARS病毒抗原的初步研究[J]. 南方医科大学学报, 2005, 25(04): 429-431,434. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||